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Abstract

Machine learning and artificial intelligence methods have achieved remarkable suc-
cess, matching and even surpassing human capabilities in various complex tasks.
However, many demonstrations have generally neglected a critical part of the intel-
ligence that is prevalent in the real world, namely, the one that emerges from the
collective of interconnected individuals with diverse capabilities, perspectives and
experiences.

To explore this fact, the current dissertation utilizes mathematical models of collabora-
tive learning and reasoning. These models are based on the following two concepts:
Bayesian inference, which is used to model how agents update their beliefs in the
face of uncertain data, and graphs, which represent the communication links and
information exchange among individuals.

Through these models, the current work examines the effect of dynamic models on
learning, as well as the implications of causal interactions among agents on their deci-
sions. In particular, this work is structured around (i) the effect of different information
exchange procedures on learning, (ii) the need to adapt to changing environments,
and (iii) the cause-and-effect relationships that arise among interacting agents over a
graph. The net effect of our study is a collection of new results and design tools that
strengthen our understanding of multi-agent networks.

A critical part of collaboration among agents is how information is exchanged among
them. The first part of the dissertation examines how information is (i) fused and (ii)
shared within a social network of interacting agents, and how these processes affect
the learning capabilities of the network. In particular, the learning rates of the network
are compared under both arithmetic and geometric fusion rules. The effect of network
connectivity and information diversity is also clarified, in addition to the impact of
random and partial information sharing.

The second part of the dissertation examines network behavior under changing envi-
ronments, where the unknown state of nature is assumed to follow a hidden Markov
model (HMM). The work examines the agents’ ability to track the evolving state. It also
considers the more challenging case of partially observable Markov decision processes
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Abstract

(POMDP), where agents are able to take actions based on certain sequential policies.
By acknowledging the uncertainties present in real-world scenarios and tackling them
through cooperative state estimation, the methods devised in this work can facilitate
the practical application of multi-agent reinforcement learning.

The first two parts of the dissertation address how procedural and environmental
factors influence agent behavior. In the final part, the work focuses on the cause-and-
effect relationships between agents. Specifically, causal inference tools are developed
to determine how agents impact other agents’ decisions and how this influence dif-
fuses through the network. Expressions are derived for the total effects of agents over
time in terms of the instantaneous direct effects, and an algorithm is devised to learn
the causal effects from observational data.

Keywords: multi-agent networks, distributed Bayesian inference, information fusion,
hidden Markov models, state tracking, partially observable Markov decision process,
social influence, causal impact, social learning, multi-agent decision making
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Résumé

Les méthodes d’apprentissage automatique et d’intelligence artificielle ont connu un
succès remarquable, égalant et même surpassant les capacités humaines dans diverses
tâches complexes. Cependant, de nombreuses démonstrations ont généralement né-
gligé une partie essentielle de l’intelligence qui prévaut dans le monde réel, à savoir
celle qui émerge du collectif d’individus interconnectés aux capacités, perspectives et
expériences diversifiées.

Pour explorer cela, la présente thèse utilise des modèles mathématiques d’apprentis-
sage collaboratif et de raisonnement. Ces modèles sont basés sur les deux concepts
suivants : l’inférence bayésienne, utilisée pour modéliser la façon dont les agents
mettent à jour leurs croyances face à des données incertaines, et les graphes, qui repré-
sentent les liens de communication et l’échange d’informations entre les individus.

À travers ces modèles, le présent travail examine l’effet des modèles dynamiques sur
l’apprentissage, ainsi que les implications des interactions causales entre agents sur
leurs décisions. En particulier, ce travail s’articule autour de (i) l’effet des différentes
procédures d’échange d’informations sur l’apprentissage, (ii) la nécessité de s’adapter
à des environnements changeants, et (iii) les relations de cause à effet qui surgissent
entre les agents interagissant sur un graphe. Le résultat net de notre étude est une
collection de nouveaux résultats et d’outils de conception qui renforcent notre com-
préhension des réseaux multi-agents.

Un aspect crucial de la collaboration entre agents est la façon dont l’information est
échangée entre eux. La première partie de la thèse examine comment l’information est
(i) fusionnée et (ii) partagée au sein d’un réseau social d’agents interagissants, et com-
ment ces processus affectent les capacités d’apprentissage du réseau. En particulier, les
taux d’apprentissage du réseau sont comparés selon des règles de fusion arithmétique
et géométrique. L’effet de la connectivité du réseau et de la diversité de l’information
est également clarifié, en plus de l’impact du partage d’informations aléatoire et partiel.

La deuxième partie de la thèse examine le comportement du réseau dans des environ-
nements changeants, où l’état inconnu de la nature est supposé suivre un modèle de
Markov caché (HMM). Le travail examine la capacité des agents à suivre l’évolution de
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Résumé

l’état. Il considère également le cas plus difficile des processus décisionnels de Markov
partiellement observables (POMDP), où les agents peuvent prendre des actions basées
sur certaines politiques séquentielles. En reconnaissant les incertitudes présentes dans
les scénarios du monde réel et en les abordant par l’estimation coopérative d’état,
les méthodes développées dans ce travail peuvent faciliter l’application pratique de
l’apprentissage par renforcement multi-agents.

Les deux premières parties de la thèse abordent comment les facteurs procéduraux et
environnementaux influencent le comportement des agents. Dans la dernière partie,
le travail se concentre sur les relations de cause à effet entre agents. Plus précisément,
des outils d’inférence causale sont développés pour déterminer comment les agents
influencent les décisions des autres agents et comment cette influence se diffuse à
travers le réseau. Des expressions sont dérivées pour les effets totaux des agents au
fil du temps en termes d’effets directs instantanés, et un algorithme est conçu pour
apprendre les effets causals à partir de données observationnelles.

Mots-clés : réseaux multi-agents, inférence bayésienne distribuée, fusion d’informa-
tions, modèles de Markov cachés, suivi d’état, processus décisionnels de Markov par-
tiellement observables, influence sociale, impact causal, apprentissage social, prise de
décision multi-agents
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Notation

x Random variables are denoted in boldface.

Ex Expectation with respect to the distribution of x.

A Sets and events in script-style letters

|A| Cardinality of setA

Ω Space of all data sequence realizations

ω An element of Ω

F σ-field generated by the sequence of data

P Probability measure over sample paths ω ∈ Ω

(Ω,F ,P) Probability space

DKL(p∥q) Kullback-Leibler (KL) divergence of distributions p and q

1K All-ones vector of size K

I Indicator function: I{B} = 1 if B is true, else 0

µ(θ) ∝ 𭟋(θ) Normalization µ(θ) = 𭟋(θ)∑
θ′∈Θ 𭟋(θ′)

AT Transpose of matrix A

A−1 Inverse of matrix A

A† Pseudo-inverse of matrix A

rank(A) Rank of matrix A

RAN(A) Range space of matrix A

NULL(A) Null space of matrix A

diag
{

A,B
} A 0

0 B


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Notation

col{wk}Kk=1



w1

w2
...

wK


vk, [v]k The k-th entry of vector v

⊗ Kronecker product

i Time index

limi→∞ xi
a.s.= x Almost sure convergence of a sequence {xi} to x

xi
a.s.−−→x Simplified notation for almost sure convergence

xi
dist.−−→x Convergence of a sequence of random variables {xi} to x in distribution
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1 Introduction

The real world is full of inherent uncertainties, where complete information about
any given situation is often not available. Agents, whether they are humans or ma-
chines, need to make decisions based on their limited knowledge of their surrounding
environment and act accordingly.

Consider, for instance, a trader in the foreign exchange market who considers whether
to keep her money in dollars or convert it into euros or francs. The decision that would
generate the highest profit in the long run depends on the current and future policies
of central banks as well as global political developments. The trader cannot possibly
know all the factors that influence market behavior beforehand.

Similarly, autonomous systems and machines face their own set of uncertainties. A
self-driving car, for example, must confidently interpret traffic signals even in adverse
conditions like fog, which reduces the intensity of the light that the car sensors receive.
A misclassification here could have serious safety implications.

In response to these challenges, the trader might analyze past currency trends and
market fluctuations to forecast future currency rates. The self-driving car might process
data from a multitude of sensors to accurately estimate the traffic signals and make
safe driving decisions. In general, rational agents, whether they are profit-seeking
traders or autonomous vehicles, try to gather as much relevant information as possible
and use it to minimize uncertainty. In other words, they try to form accurate beliefs
about their environment.

In the following section, we introduce a classical mathematical framework for modeling
rational belief formation in the face of uncertainty.
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Introduction

1.1 Bayesian Reasoning

In this section, we review Bayesian inference, which formalizes our earlier discussion
on belief formation under uncertainty. This framework adopts a probabilistic approach
to quantify uncertainties concerning the world. Here, an agent’s belief is defined as a
probability distribution over all possible states of the world.
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Figure 1.1: A block diagram representing a
single Bayesian belief update.

More formally, a set of discrete hypothe-
ses is represented as Θ = {θ1, θ2, . . . , θH},
where each hypothesis θ ∈ Θ represents a
potential state of the world. The true state
of the world, which is typically unknown, is
denoted by θ◦ and is also a member of Θ.

The prior belief of an agent is a probability
mass function (pmf) over the hypotheses
set Θ, denoted by µ0. For each hypothesis θ,
µ0(θ) quantifies agent’s initial confidence
that θ corresponds to the hidden true state
of the world θ◦.

Bayes’ theorem provides a formula for the
integration of new observations into one’s

prior beliefs. Specifically, a rational agent revises its initial belief µ0(θ) encountering a
new observation ξ ∼ L(ξ|θo) as follows:

µ(θ) = L(ξ|θ)µ0(θ)∑
θ′∈Θ L(ξ|θ′)µ0(θ′) . (1.1)

Here, µ denotes the posterior belief and accordingly, µ(θ) indicates the revised confi-
dence in the proposition that “θ◦ = θ” after the observation of new data ξ — see Fig. 1.1
for a visual representation.

In the Bayes’ update (1.1), the quantityL(ξ|θ) represents the likelihood of observing ξ if
the true state θ◦ were equal to θ. For each θ, the term L(·|θ) is the “likelihood” function
under θ. Obviously, given that the true state is θ◦, the observations ξ are generated
according to the distribution L(·|θ◦).

Illustration with an application

To illustrate the use of Bayesian inference in a practical setting, let us consider an
autonomous vehicle approaching traffic signals. The vehicle must determine the color
of the light in order to decide on an appropriate action, e.g., slowing down.
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1.1 Bayesian Reasoning

The possible states of the world correspond to the colors of the traffic light. That is to
say,

Θ = {•,•,•}. (1.2)

where these states represent the colors red, yellow, and green, respectively.

Let us assume that the prior belief of the vehicle reflects that the duration of the red
and green traffic lights are typically longer compared to the duration of the yellow light.
Therefore, the vehicle’s initial belief might be that the traffic light is most likely red or
green, with a lower chance of being yellow. Then, the prior pmf for these states can be,
say,

µ0(•) = 0.4, µ0(•) = 0.2, µ0(•) = 0.4. (1.3)

Next, suppose that the vehicle observes ξ, which could be a partial view of the traffic
signal or the behavior of other vehicles in proximity. The likelihoods of this observation
given each possible state of the traffic light might be:

L(ξ|•) = 0.7, L(ξ|•) = 0.2, L(ξ|•) = 0.1 (1.4)

The vehicle can have processors on-board to compute (or estimate) these likelihood
values with, say, neural networks that are trained offline. In light of (1.1), the posterior
belief for the red light can be obtained by calculating

µ(•) = L(ξ|•)µ0(•)
L(ξ|•)µ0(•) + L(ξ|•)µ0(•) + L(ξ|•)µ0(•) , (1.5)

and similarly for the other lights. Inserting the numbers for the denominator yields:

L(ξ|•)µ0(•) + L(ξ|•)µ0(•) + L(ξ|•)µ0(•) = 0.7× 0.4 + 0.2× 0.2 + 0.1× 0.4
= 0.36.

If we substitute this result into (1.5), we get:

µ(•) = 0.7× 0.4
0.36 ≈ 0.78. (1.6)

Similarly, the posterior beliefs for the yellow and green lights are given by

µ(•) = L(ξ|•)µ0(•)
0.36 = 0.2× 0.2

0.36 ≈ 0.11

µ(•) = L(ξ|•)µ0(•)
0.36 = 0.1× 0.4

0.36 ≈ 0.11.

Therefore, the prior belief in (1.3) is adjusted to the posterior belief

µ(•) = 0.78, µ(•) = 0.11, µ(•) = 0.11. (1.7)
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Figure 1.2: A single Bayesian update on the beliefs over traffic light colors.

Notice that the vehicle’s belief on the traffic light being red has increased significantly
from 0.4 to 0.78 after incorporating the new observation ξ. Figure 1.2 depicts this
change in the belief.

1.2 Sequential Belief Updates

In real-world scenarios, observations or data often arrive sequentially over time rather
than simultaneously. In such environments, the Bayesian framework discussed in
the previous section can be applied iteratively, allowing beliefs to be continuously
improved as new observations become available.

Formally, we consider a temporally ordered sequence of observations that are denoted
by ξ1, ξ2, . . . , ξi. Here, the index i denotes the particular time instant at which the
observation ξi becomes available to the agent.

In the sequential framework, the belief revision becomes a recursive application of
Bayes update (1.1). At each time instant i, the posterior belief from the previous time
i− 1, denoted as µi−1, is taken as the prior for the current time i. In other words, the
posterior µi at time i is obtained by using µi−1 and ξi as follows (cf. (1.1))

µi(θ) = L(ξi|θ)µi−1(θ)∑
θ′∈Θ L(ξi|θ′)µi−1(θ′) , (1.8)

according to (1.1) — see Fig. 1.3 for an illustration. The expectation is that as the
observations accumulate more evidence over time, the belief should become more
and more concentrated around the latent true state of the world.

This idea was first discussed in Thomas Bayes’ seminal work [1] that was published
posthumously by Richard Price in 1761. When Price published his late friend Bayes’
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Bayesian update

Figure 1.3: A block diagram representing sequential Bayesian belief updates over time.

ideas, he also incorporated a thought experiment to illustrate the sequential reasoning
fundamental to Bayesian inference. Specifically, he imagined a scenario where an
individual observes the sunrise multiple times and uses these observations to infer the
chance of the sun rising again the next day, which exemplifies the process of sequential
Bayesian reasoning discussed above. The original words of this example in [1] are as
follows.

“... Let us imagine to ourselves the case of a person just brought forth into this, world
and left to collect from his observations the order and course of events what powers and
causes take place in it. The Sun would, probably, be the first object that would engage
his attention; but after losing it the first night he would be entirely ignorant whether
he should ever see it again. He would therefore be in the condition of a person making
a first experiment about an event entirely unknown to him. But let him see a second
appearance or one return of the Sun, and an expectation would be raised in him of a
second return, and he might know that there was an odds of 3 to 1 for some probability
of this. This odds would increase, as before represented, with the number of returns to
which he was witness...”

In the context of our traffic light example, as the vehicle approaches the traffic signals,
its sensors gather increasing amount of data — see Fig. 1.4 for an illustration. Each new
observation can be used to update the vehicle’s belief about the color of the traffic light.
To illustrate the use of sequential updates in this practical setting, let us assume that
after the first observation and the belief update in (1.3)–(1.7), the vehicle encounters
another observation ξ2. The likelihood values for ξ2 can be, say,

L(ξ2|•) = 0.8, L(ξ2|•) = 0.15, L(ξ2|•) = 0.05. (1.9)

If we incorporate ξ2 to the posterior belief (1.7) of the first iteration that we now denote
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Figure 1.4: A vehicle getting more observations as it approaches to a traffic signal.

by µ1, we arrive at the Bayes update

µ2(•) = L(ξ2|•)µ1(•)
L(ξ2|•)µ1(•) + L(ξ2|•)µ1(•) + L(ξ2|•)µ1(•)

= 0.8× 0.78
0.8× 0.78 + 0.15× 0.11 + 0.05× 0.11

≈ 0.96 (1.10)

Performing the same calculations for the other states as well, the posterior belief µ2
can be found as

µ2(•) ≈ 0.96, µ2(•) = 0.15× 0.11
0.646 ≈ 0.03, µ2(•) = 0.05× 0.11

0.646 ≈ 0.01. (1.11)

Assume that another observation ξ3 arrives for which the likelihood values again favor
the red light, e.g.,

L(ξ3|•) = 0.9, L(ξ3|•) = 0.05, L(ξ3|•) = 0.05. (1.12)

The vehicle can update its belief similarly

µ3(•) = L(ξ3|•)µ2(•)
L(ξ3|•)µ2(•) + L(ξ3|•)µ2(•) + L(ξ3|•)µ2(•)

= 0.9× 0.96
0.9× 0.96 + 0.05× 0.03 + 0.05× 0.01

≈ 0.995, (1.13)

and arrives at the posterior belief

µ3(•) ≈ 0.996 µ3(•) ≈ 0.003, µ3(•) ≈ 0.001. (1.14)

Notice that with each observation ξi, the vehicle’s belief µi converges towards the state
of the traffic light being red. It reflects a higher confidence in this prediction as it
accumulates more data supporting this hypothesis.
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1.3 Social Reasoning

In the thought experiment from [1] discussed earlier, where a person just brought
into the world forms beliefs by observing the sun, an important element is missing:
social interactions. Humans do not exist in isolation; rather, they are continually and
socially influenced by their environment and the people around them. In other words,
our beliefs are also shaped by others’ beliefs. Similarly, animals learn critical survival
strategies, such as locating food or avoiding predators, from their elders.

These principles apply to autonomous systems as well. Consider our recurring exam-
ple of a car attempting to predict the color of a traffic light. Typically, this scenario
involves multiple vehicles on the road, as illustrated in Fig. 1.5, each equipped with
advanced sensors and onboard processing capabilities. Despite these technological
advances, each vehicle has inherently limited perception abilities confined by the
physical and computational constraints of its sensors and algorithms. Through coop-
eration, these vehicles can achieve a collective understanding and predictive power
far superior to that of any single vehicle. This form of social reasoning enables more
effective synchronization of actions, which is essential for maintaining smooth traffic
flow and preventing collisions. Similarly, the concept of collective reasoning extends
beyond transportation to other socio-technical and cyber-physical systems such as
wireless networks, power grids, and urban infrastructures, where communication and
cooperation among various components are critical.

Figure 1.5: Intelligent vehicles and infrastructure can collaborate to enhance awareness of
road conditions. Real-time and spontaneous cooperation is crucial in this context, as it allows
for immediate responses to dynamic conditions, and hence improving the safety and efficiency
of transportation.

In general, a rational agent uses the maximum available information to make the
optimal decisions. In social settings, this information not only stems from one’s own
observations but also from the insights and beliefs of others. Building on this notion,
in the current thesis, we will focus on belief formation in social settings, which is a
topic of heightened interest in the literature. Namely, we will consider multi-agent sys-
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Figure 1.6: A block diagram representing belief updates and social interactions unrolled over
time.

tems, where agents share a common world and a generative model of that world, and
cooperate to form more precise beliefs about their environment, thereby enhancing
inference and learning.

To better examine how social systems interact with each other, let us adjust our earlier
notation to accommodate multiple agents. We consider a group of K agents. Each
agent k maintains a belief µk,i about the common state of the world, with µk,i(θ)
representing the confidence agent k has at time i in θ being the true state θ◦. We
denote the personal (or private) observation agent k receives at time i by ξk,i, which is
distributed according to the likelihood function Lk(·|θ◦).

For visualization purposes, we refer to the block diagram in Fig. 1.6, which depicts
consecutive local belief updates and interactions between two agents k and ℓ. While
this diagram is useful for an initial understanding, in practice, multi-agent systems
have complexities that far exceed those of two-agent models. As such, we dedicate
Chapter 2 for describing our social learning model while introducing necessary graph
and decision theoretical tools. But before proceeding to Chapter 2, we first discuss the
thesis goal and contributions at a high level in the next two sections.

1.4 Revisiting the Title

After setting the stage in the previous sections, revisiting each word of our title, “Se-
quential Reasoning with Socially Caused Beliefs”, can help clarify the goals of our
thesis:
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1.5 Thesis Contributions

SEQUENTIAL refers to the process of continually updating beliefs based on streaming
observations that arrive over time. In this thesis, we use the recursive Bayesian updates
discussed in Section 1.2 as a model.

REASONING refers to making sense of data under uncertainty through likelihoods
and beliefs. In this work, we consider probabilistic (or statistical) reasoning through
Bayes’ rule, as discussed in Section 1.1.

SOCIALLY refers to the multi-agent, cooperative, and collective dimensions of rea-
soning. As explored in Section 1.3, these interactions can enhance the capacity of
individual agents to form more accurate beliefs of the world.

CAUSED refers to how agents’ beliefs are formed and adjusted. In the context of this
thesis, “socially caused” refers to the beliefs that are influenced by the interactions
within a social network.

BELIEFS refer to the confidence agents have on possible hypotheses being true
about their environment. In this thesis, the terms “opinion” and “soft-decision” are
used interchangeably with the term “belief”. The former is borrowed from behavioral
contexts, while the latter is used to highlight decisions involving a range of possibilities,
and not just binary outcomes.

Overall, the primary goal of this thesis is to understand and enhance collective decision-
making in uncertain environments. We aim to merge sequential Bayesian reasoning
methods with the networked interactions. Our approach extends previous studies
by incorporating and exploiting Markovian models for the evolution of the state, and
by examining the causal effects that arise among agents. The thesis also examines
enhanced policies for fusing information and opens up applications in the context of
reinforcement learning.

1.5 Thesis Contributions

In particular, the dissertation makes contributions in three key areas of sequential
reasoning with socially caused beliefs: information exchange, dynamic environments,
and causal influence. Accordingly, we have structured our thesis into three parts, each
focusing on one of these areas.

1.5.1 Part I: Information Exchange

The first part of the thesis addresses the information fusion and sharing aspects within
networked interactions.

9



Introduction

Chapter 3: Information Fusion

A foundational element of social systems is the aggregation of diverse information
sources. In Chapter 3, we provide a theoretical framework that compares the effective-
ness of arithmetic and geometric averaging based fusion rules, and evaluates them
based on their learning rates. We establish quantitative bounds in terms of network
connectivity and the diversity of information across the network. These bounds can
help practitioners select the appropriate fusion strategy for various applications.

Chapter 4: Information Sharing

The communication patterns that networked systems exhibit can significantly influ-
ence the behavior of the system. In Chapter 4, we investigate a pattern where the
nature of information sharing is random. Under this pattern, we provide conditions
under which agents can successfully learn the truth or risk mislearning. The theoretical
results yield useful insights into the impact of communication protocols and frequency
on the speed of collective inference.

1.5.2 Part II: Dynamic Environments

The second part of the thesis focuses on dynamic environments, where state of nature
evolves over time. Here, the goal is not to learn a static hidden parameter but to track
its changes over time.

Chapter 5: Markovian States

In Chapter 5, we use hidden Markov models (HMMs) to represent the changes in the
true state of nature. We extend previous works on networked belief formation for
inferring static states to tracking dynamic states. Additionally, we provide theoretical
performance comparisons between an information theoretically optimal strategy and
the decentralized strategy we propose.

Chapter 6: Policy Evaluation in Dec-POMDPs

In Chapter 6, we extend the framework of Chapter 5 to include partially observable
Markov decision processes (POMDPs), where agents perform actions based on their
beliefs. This extension is particularly relevant for real-world applications of multi-
agent reinforcement learning, where the complete knowledge of the state is rarely
available.
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1.5 Thesis Contributions

1.5.3 Part III: Causal Influence

The final part of the thesis explores how agents’ beliefs are causally influenced by
others.

Chapter 7: Causality in Social Networks

In Chapter 7, we establish a theoretical framework that reveals the causal relations be-
tween agents, distinguishing it from merely correlational associations. Additionally, we
introduce algorithms that rank agents based on their influence and propose methods
for learning causal relationships from observational data.

Chapter 8: Causality under Asynchronicity

Motivated by the fact that real-world applications exhibit significant asynchronous
behavior, in Chapter 8, we extend our discussions from Chapter 7 to understand how
different communication participation patterns and fusion policies change causal
influence.
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2 Social Reasoning

In the previous chapter, we focused on single-agent Bayesian reasoning and discussed
its extension to multi-agent scenarios. In this chapter, we build on the concepts
introduced previously and review a standard graph-theoretical approach to model the
dynamics of social interactions. This chapter sets the stage for our contributions in the
following sections by introducing the necessary notation and outlining the modeling
conditions.

2.1 Network Topology

In this section, we describe the graphical models [2–8] used to represent the network
architectures considered in this thesis. Graphs are ideal for modeling networks; for
example, in a social network, graph nodes can represent users, while edges represent
the relationships and communication links between them. This facilitates a spatio-
temporal representation of the network.

There are two main architectures of interest depending on the communication topol-
ogy of agents.

2.1.1 Decentralized Peer-to-Peer Networks

Peer-to-peer networks are based on localized interactions and are fully decentralized,
meaning there is no central unit. In these networks, agents perform local adaptation
and integrate information from their immediate neighbors [7, 9].

In particular, we consider strongly-connected networks [7,8] — see Fig. 2.1. This means
that there exists a path linking any agent ℓ to any other agent k, which starts at ℓ and
ends at k. Moreover, there exists at least one agent k◦ in the graph with a self-loop,
i.e., an agent that does not discard its own observations and has positive self-reliance.
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Figure 2.1: An illustration of a strongly connected decentralized network topology.

These conditions allow the information to diffuse across the network thoroughly.

We associate a non-negative combination coefficient aℓk with the link from ℓ to k. This
entry denotes the confidence score that agent k assigns to the information received
from agent ℓ. The score aℓk is positive if, and only if, agent ℓ is an immediate neighbor
of agent k. Otherwise it is equal to zero. We denote the neighborhood of agent k by
Nk. In other words, aℓk > 0 if, and only if, ℓ ∈ Nk. Assuming K agents, we collect the
weights over the graph into the K ×K combination matrix A = [aℓk].

The graph underlying the network is directed and hence the combination matrix A
is not necessarily symmetric, i.e., in general aℓk ̸= akℓ. Nevertheless, the confidence
scores aℓk that agent k assigns to its neighbors inNk should add up to one. This means
that the matrixA is a left-stochastic matrix, meaning the entries on each of its columns
add up to 1, i.e.,

AT1K = 1K . (2.1)

The strong-connectedness of the graph translates into A being a primitive matrix [7].
In terms of Markov chain terminology [10], this means that A is an irreducible and
aperiodic Markov kernel. Therefore, in view of the Perron-Frobenius theorem [11],
the matrix A will have a unique eigenvalue at 1, and the corresponding eigenvector v
satisfies:

Av = v, 1T
Kv = 1, vk > 0. (2.2)

The eigenvector v is called the Perron vector of A and all its entries are positive and
normalized to add up to 1. The k-th entry of v, denoted by vk, measures the relative
network centrality of agent k in the network.
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2.1 Network Topology

2.1.2 Architectures with Fusion Center

In this architecture, agents communicate with and through a central node instead
of direct communication with other agents. The agents send their information such
as raw data, opinion or belief about the environment, to a fusion center. The fusion
center combines the information received from peripheral agents and may broadcast
the aggregated information back to agents — see Fig. 2.2 for an illustration.
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⇠k,i

Figure 2.2: An illustration of a federated architecture.

In the figure, we display confidence weights denoted by vk, which are used by the
central unit to fuse the information arriving from the agents. We collect these weights
into the vector of confidence weights with v ≜ [v1, . . . , vK ]T. The k-th entry vk ∈ (0, 1),
which is assigned by the fusion center to agent k [7, 12], is usually constructed based
on the previous interactions with the agents. These weights are assumed to be positive
constants that add up to 1.
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Figure 2.3: A fully connected network topol-
ogy.

Notice the parallel between the definition
of the confidence vector v for the federated
architecture and the Perron eigenvector for
the decentralized architecture in (2.2). In
particular, note that, the federated archi-
tecture is equivalent to a fully-connected
network as in Fig. 2.3 with a rank-one com-
bination matrix:

A = v1T
K , (2.3)

whose Perron vector coincides with the
confidence vector, v. Therefore, in the se-
quel, we focus on general combination ma-
trices A described for decentralized net-

works, which also cover federated architectures as a special case. Whenever it yields
additional results and insights on top of the general case, we constrain A to be a
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rank-one matrix.

2.2 Inference Framework

In this section, we explain how the Bayesian reasoning framework presented in the
previous chapter has been extended to distributed architectures. By inference, we refer
to the challenge of predicting hidden variables from partially informative observations,
data, or features.

Thus, consider a groupN of K agents (e.g., social media users, sensors, or machines)
that are trying to discover the hypothesis that best explains their observations of the
world. More formally, these agents aim to distinguish the true state of nature θ◦ from a
finite set of H hypotheses or states, denoted as Θ = {θ1, θ2, . . . , θH}. In this thesis, we
focus on categorical variables that belong to sets with finite cardinality, as opposed to
estimating continuous-valued random variables.

Illustratively, in a behavioral context, voters might aim to reach a consensus on the best
political representative from a set of candidates {A, B, C, D}, influenced by personal
biases and their interactions over a social network. Similarly, in engineering systems, a
group of vehicles might cooperate to determine the color of a traffic light among the
set of possibilities Θ = {•,•,•}.
At each time instant i, each agent k receives a personal and private observation ξk,i,
which we assume to encapsulate all out-of-network information available to k at time
i. It is distributed according to some marginal likelihood function Lk(ξ|θ◦) dependent
on the true state θ◦. The social interactions and cooperations are of interest for agents.
This is because observations typically provide partial information, which may be
limited or distorted by each agent’s potentially restricted or noisy perspective on the
overall phenomenon.

In general, the observations ξk,i are assumed independent and identically distributed
(i.i.d.) over time, and the likelihood functionsLk(ξ|θ◦) are assumed to be time-invariant.
However, the observations are not necessarily independent across the agents. This
is common in applications where ensuring spatial independence of observations is
impractical. In such environments, there might be confounding factors that affect
multiple agents simultaneously and induce correlation among the observations. In
order to emphasize the random nature of the observations, we will use the boldface
notation ξk,i from now on. This randomness is also reflected on the belief vectors,
which will similarly denote in boldface and write as µk,i.

Each agent k knows the likelihood model Lk(ξ|θ) for every possible hypothesis θ ∈ Θ.
If the distribution Lk(ξ|θ) for a hypothesis θ ̸= θ◦ is sufficiently different from Lk(ξ|θ◦),
then it is easier for agent k to distinguish θ◦ from θ. This “distinguishing power” can be
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quantified using the Kullback-Leibler divergence [13] between the likelihood models,
namely,

dk(θ) ≜ DKL

(
Lk(·|θ◦)||Lk(·|θ)

)
. (2.4)

The larger this quantity is, the more informative agent k’s observations are for distin-
guishing a wrong hypothesis θ from the true hypothesis θ◦.

Based on the local observations and on interactions with other agents, each agent k
forms a belief vector, denoted by µk,i, which is a probability mass function defined
over the set of hypotheses Θ. Here, the entry µk,i(θ) quantifies the confidence k has
about θ ∈ Θ being the true hypothesis θ◦ at time i. Agents exchange their beliefs with
each other according to some communication topology from the previous section. The
way we model their information exchange will be detailed in Section 2.3.

In this work, we are interested in whether individual agents can discern (learn) the true
state θ◦ from other hypotheses. We distinguish three possible scenarios on this matter.

Definition 2.1 (Learning and mislearning). We say that truth learning occurs
whenever:

µk,i(θ◦) a.s.−−→ 1, ∀k ∈ N (2.5)

In other words, truth learning means that agents become fully confident on the
true hypothesis with probability one. In any other scenario we say that there is no
learning. Among the cases where there is no learning, we define total mislearning
as corresponding to the case in which for some θ ∈ Θ \ {θ◦}:

µk,i(θ)
a.s.−−→ 1, ∀k ∈ N (2.6)

In this case, agents become fully confident on a wrong hypothesis, with probability
one.

We emphasize that according to Definition 2.1, learning and mislearning occur when-
ever agents become fully confident on some hypothesis. In traditional Bayesian learn-
ing, the belief incorporates knowledge from an increasing number of measurements,
with the expectation that the belief is not only maximized around the truth but also
concentrates its mass on it. Any other outcome would imply a system malfunction.
The same asymptotic learning outcome is expected in our definition as well. An infinite
amount of evidence should lead to certainty. An alternative definition of learning could
be to require that the agents’ beliefs are maximized at the true hypothesis [14]. We
adopt the former definition for consistency with other traditional works in the field.
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2.3 Social Learning

In this section, we review social learning models, which are mathematical models
designed to analyze how agents form opinions and make decisions within a network
defined by a graph topology [14–26].

In particular, our focus is on locally Bayesian social learning strategies [21–25], which
are also known as non-Bayesian strategies in the literature. While there exist fully
Bayesian social learning strategies seeking to form the global Bayesian posterior in a
decentralized manner [20], they nevertheless necessitate extensive knowledge about
other agents, such as their likelihood functions and network topology. Even under
this extensive knowledge, achieving the global Bayesian posterior is known to be
NP-hard [27]. In contrast, non-Bayesian social learning strategies rely solely on the
localized processing of data and on localized interactions, and have been shown to
allow the inference of the true state of nature [21, 22]. Furthermore, these strategies
are better suited to real-world scenarios compared to fully Bayesian strategies for at
least two reasons. First, from a behavioral perspective, non-Bayesian strategies agree
with the theory of bounded rationality in human decision making [28, 29]. Second,
from an engineering perspective, they allow fully decentralized designs with moderate
complexity and efficient memory.

2.3.1 Non-Bayesian Social Learning

Non-Bayesian social learning algorithms [21–24] are based on consecutive local update
and information exchange steps, which are detailed next.

Local Update

At each time instant i, each agent first incorporates its personal observation ξk,i to its
belief in a locally Bayesian fashion to obtain its intermediate belief:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ). (2.7)

Here, the proportionality sign ∝ means that the entries of the resulting vector are
normalized to add up to 1, as befits a true probability mass function. That is, expression
(2.7) is a compact notation for

ψk,i(θ) = Lk(ξk,i|θ)µk,i−1(θ)∑
θ′∈Θ Lk(ξk,i|θ′)µk,i−1(θ′) . (2.8)

The motivation for the local Bayesian update step (2.7) is at least two-fold. From
a behavioral point of view, Bayes’s rule is used to model human reasoning under
uncertainty in neuroscience [30] and the social sciences [4, 31]. From a system design
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perspective, Bayes’s rule is known to be an optimal information processing rule [32].

Information Exchange

In the next step, the intermediate beliefs are shared with other agents, which may
average them in a geometric manner to form the updated belief using the confidence
scores they assign to their neighbors as follows:

µk,i(θ) ∝
∏
ℓ∈Nk

(
ψℓ,i(θ)

)aℓk
. (2.9)

Again, the proportionality sign∝ implies that (2.9) is equivalent to

µk,i(θ) =

∏
ℓ∈Nk

(ψℓ,i(θ))aℓk∑
θ′∈Θ

∏
ℓ∈Nk

(ψℓ,i(θ′))aℓk
. (2.10)

In (2.10), the term in the numerator is a weighted geometric average of the received
intermediate beliefs, and the denominator is a normalization term that makes sure the
belief vector µk,i is a pmf over Θ.

The combination step (2.9) is a non-Bayesian way of combining beliefs and is inspired
by the fact that humans are boundedly rational [29]. In the above implementation, the
agents are combining their neighbors’ instantaneous opinions, as opposed to behaving
in a fully Bayesian manner [20], which would require global information (such as the
graph topology and access to all observations) and is computationally intractable in
general [27].

In geometric social learning, steps (2.7) and (2.9) are repeated at each time instant.
We summarize the resulting procedure in Algorithm 2.1. Nevertheless, there are other
variations of non-Bayesian social learning algorithms which we describe in the next
section.

2.3.2 Model Variations

In the literature, there are other non-Bayesian social learning algorithms with different
information pooling strategies or local adaptation steps. In this section, we introduce
three of them that are commonly encountered in the literature.

Arithmetic social learning

In (2.9), the fusion of beliefs is based on geometric averaging (GA), which is also known
as logarithmic pooling [33]. There are variations where the combination step is based
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Algorithm 2.1 Geometric social learning

1: while i ≥ 1 do
2: for each agent k = 1, 2, . . . ,K do
3: receive private observation ξk,i
4: adapt locally to obtain intermediate belief:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (2.11)

5: end for
6: agents exchange intermediate beliefs with their neighbors
7: for each agent k = 1, 2, . . . ,K do
8: combine received beliefs with geometric averaging (GA) rule:

µk,i(θ) ∝
∏
ℓ∈Nk

(
ψℓ,i(θ)

)aℓk
(2.12)

9: end for
10: i← i+ 1
11: end while

on an arithmetic averaging operation [22]. Namely, step (2.9) is replaced by

µk,i(θ) =
∑
ℓ∈Nk

aℓkψℓ,i(θ) (2.13)

where arithmetic averaging (AA) [34] replaces GA — see Algorithm 2.2. These two
averaging strategies possess distinct properties [35] and the choice of which to use for
social learning is dependent upon the specific application under consideration. Here,
we comment briefly on some features of AA and GA; the reader may refer to [35] for
other useful characteristics.

While GA is externally Bayesian, namely, the Bayesian updates on the beliefs and the
aggregation step are commutative, it nevertheless gives agents a veto power. In other
words, if one agent has zero belief on some hypothesis, then the composite belief
will also be zero on that same hypothesis regardless of the beliefs by the other agents.
The AA rule, on the other hand, does not give this much power to individual agents
and hence can be more robust against adversarial attacks. For this same reason, the
support of the averaged belief vectors is the union of the supports in the AA case, while
it is the intersection of the supports in the GA case. Hence, in GA, all agents need to
have positive initial beliefs for all hypotheses in order not to discard any hypothesis.
In contrast, it is enough for at least one agent to have a positive initial belief for any
hypothesis in order not to get discarded in AA. Moreover, in the case of Gaussian beliefs
over continuous hidden variables, repeated application of GA preserves Gaussianity
and is related to the covariance-intersection method [36]. In contrast, the properties
of AA-combined distributions diverge from the Gaussian distributions.
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Algorithm 2.2 Arithmetic social learning

1: while i ≥ 1 do
2: for each agent k = 1, 2, . . . ,K do
3: receive private observation ξk,i
4: adapt locally to obtain intermediate belief:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (2.14)

5: end for
6: agents exchange intermediate beliefs with their neighbors
7: for each agent k = 1, 2, . . . ,K do
8: combine received beliefs with arithmetic averaging (AA) rule:

µk,i(θ) =
∑
ℓ∈Nk

aℓkψℓ,i(θ) (2.15)

9: end for
10: i← i+ 1
11: end while

In general, it is more common to use geometric averaging for fusing probability density
functions, while arithmetic averaging is typically favored for combining point estimates
of random variables [37]. However, this method of application often relies on intuitive
reasoning, and theoretical results are notably scarce, particularly in the context of
social learning.

Adaptive social learning

The traditional non-Bayesian social learning (NBSL) strategy in (2.7)–(2.9) has the
drawback that agents do not prioritize new observations against their old observations.
In addition to falling short in modelling human behavior, this strategy can be disad-
vantageous for engineering applications that require adaptation under non-stationary
environments. To tackle this issue, the work [14] proposed the adaptive social learning
strategy by changing the adaptation step (2.7) into1

ψk,i(θ) ∝ Lβk(ξk,i|θ)µ1−δ
k,i−1(θ), (2.16)

where 0 < δ < 1 and β > 0 are design parameters. In particular, large values of δ or β
place more focus on new observations, whereas small values give importance to past
beliefs. The resulting algorithm is listed in Algorithm 2.3.

1In fact, [14] only considers the special cases of β = δ and β = 1. However, their results can be
adapted to general β > 0 straightforwardly.
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Algorithm 2.3 Adaptive social learning (ASL)

1: while i ≥ 1 do
2: for each agent k = 1, 2, . . . ,K do
3: receive private observation ξk,i
4: adapt locally to obtain intermediate belief:

ψk,i(θ) ∝ Lβk(ξk,i|θ)µ1−δ
k,i−1(θ), (2.17)

where 0 < δ < 1 and β > 0 are design parameters.

5: end for

6: agents exchange intermediate beliefs with their neighbors

7: for each agent k = 1, 2, . . . ,K do
8: combine received beliefs with geometric averaging (GA) rule:

µk,i(θ) ∝
∏
ℓ∈Nk

(
ψℓ,i(θ)

)aℓk
(2.18)

9: end for
10: i← i+ 1
11: end while

Consensus-based social learning

The algorithms we have discussed so far are motivated by diffusion strategies over
graphs [7]. There are also variations based on the consensus strategy [38], where agents
combine their intermediate beliefs with the previous beliefs of the neighbors.

For instance, the combination step of the geometric averaging based consensus algo-
rithm replaces (2.9) by

µk,i(θ) ∝ (ψk,i(θ))akk
∏

ℓ∈Nk\{k}

(
ψℓ,i(θ)

)aℓk
(GA-Consensus) (2.19)

Similarly, in lieu of (2.13), the combination step in the arithmetic averaging based
consensus algorithm [21] is given by

µk,i(θ) = akkψk,i(θ) +
∑

ℓ∈Nk\{k}
aℓkµℓ,i(θ) (AA-Consensus) (2.20)

We summarize both algorithms in Algorithm 2.4.
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Algorithm 2.4 Consensus social learning

1: while i ≥ 1 do
2: for each agent k = 1, 2, . . . ,K do
3: receive private observation ξk,i
4: adapt locally to obtain intermediate belief:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (2.21)

5: end for
6: for each agent k = 1, 2, . . . ,K do
7: combine the intermediate beliefs with the previous beliefs of the neighbors

µk,i(θ) ∝ (ψk,i(θ))akk
∏

ℓ∈Nk\{k}

(
ψℓ,i(θ)

)aℓk
(GA-Consensus) (2.22)

by using geometric averaging rule or

µk,i(θ) = akkψk,i(θ) +
∑

ℓ∈Nk\{k}
aℓkµℓ,i(θ) (AA-Consensus) (2.23)

by using arithmetic averaging rule
8: end for
9: agents exchange beliefs with their neighbors

10: i← i+ 1
11: end while

2.4 Network Limiting Behavior

Before presenting the main contributions of this thesis in the following chapters, for
the benefit of reader, we briefly review some earlier results on the behavior of agents
under the introduced social learning frameworks.

2.4.1 Modeling Conditions

In order to avoid pathological cases, we assume that

DKL

(
Lk(·|θ◦)||Lk(·|θ)

)
<∞ (2.24)

for each agent k and hypothesis θ. This condition makes sure that the likelihood
functions for different hypotheses share the same support; and no observation alone
is sufficient to refute any hypothesis.

Moreover, the following condition enables the aggregate of all agents to distinguish the
true hypothesis from the wrong ones.
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Assumption 2.1 (Global identifiability). For each wrong hypothesis θ ̸= θ◦, there
exists at least one clear-sighted agent k⋆ that can distinguish θ from the true
hypothesis θ◦, i.e.,

DKL

(
Lk⋆(·|θ◦)

∣∣∣∣∣∣Lk⋆(·|θ)
)
> 0 (2.25)

Note that this is a weaker assumption than local identifiability, which requires all
agents (not only one) to have the capability of distinguishing the truth individually.

Furthermore, for geometric social learning, the following condition is necessary in
order to avoid trivial cases where agents discard some hypotheses right from the start.

Assumption 2.2 (Initial beliefs). All initial beliefs are strictly positive at all hy-
potheses, i.e., for each agent k and for all hypotheses θ ∈ Θ, µk,0(θ) > 0.

If Assumption 2.2 is violated for a hypothesis θ, due to the nature of the geometric
fusion rule, all agents would have zero belief on θ in finite time.

2.4.2 Geometric Social Learning

Next, we present an existing result from the literature [23, 24] that shows agents can
discover the true hypothesis θ◦ with full confidence under the GA-based non-Bayesian
social learning (NBSL) strategy (2.7)–(2.9). We also provide the proof of this result
which will become useful for our discussions in the sequel.

Theorem 2.1 (Truth learning). Under Assumptions 2.1 and 2.2, the social learn-
ing algorithm (2.7)–(2.9) with geometric averaging allows each agent k to learn
the truth with probability 1, i.e.,

µk,i(θ◦) a.s.−−→ 1. (2.26)

Furthermore, the asymptotic learning of the truth occurs at an exponential rate.
That is to say, the asymptotic convergence rate of the beliefs on wrong hypotheses
θ ̸= θ◦ to zero is given by

1
i

log µk,i(θ
◦)

µk,i(θ)
a.s.−−→

K∑
k=1

vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|θ)). (2.27)

Proof. The algorithm (2.7)–(2.9) gives rise to the following recursion for the log-belief
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ratios:

log µk,i(θ)
µk,i(θ◦) =

∑
ℓ∈Nk

aℓk

(
log Lℓ(ξℓ,i|θ)

Lℓ(ξℓ,i|θ◦) + log µℓ,i−1(θ)
µℓ,i−1(θ◦)

)
. (2.28)

If we iterate this equation over time index i and also divide both sides by i, we arrive at

1
i

log µk,i(θ)
µk,i(θ◦) = 1

i

i∑
j=1

K∑
ℓ=1

[Ai−j+1]ℓk log Lℓ(ξℓ,j |θ)
Lℓ(ξℓ,j |θ◦) + 1

i

K∑
ℓ=1

[Ai]ℓk log µℓ,0(θ)
µℓ,0(θ◦) . (2.29)

Since A is a primitive and left-stochastic matrix, it holds by the Perron-Frobenius
theorem that Ai → v1TK as i → ∞ [39, Chapter 8]. If we incorporate this fact into
(2.29), the second term on the right hand side (RHS) vanishes due to Assumption 2.2.
Hence, the expression (2.29) transforms into:

1
i

log µk,i(θ)
µk,i(θ◦) →

1
i

i∑
j=1

K∑
ℓ=1

vℓ log Lℓ(ξℓ,j |θ)
Lℓ(ξℓ,j |θ◦) (2.30)

as time index i gets larger. Since the observations {ξℓ,i} are i.i.d. over time, and the
expectation of the log-likelihood ratios satisfy:

Eθ◦

[
log Lk(ξk,i|θ

◦)
Lk(ξk,i|θ)

]
= DKL

(
Lk(·|θ◦)||Lk(·|θ)

)
<∞. (2.31)

Using (2.31) and applying the strong law of large numbers [40, Chapter 7] to (2.30), we
establish the decay rate expression (2.27). Observe that the decay rates are character-
ized by a weighted average of the KL divergences of the agents — it is known that these
entities reflect the inference capacity of an agent for hypothesis testing problems [41].

In addition, under Assumption 2.1, the RHS of (2.27) is strictly positive for each θ ̸= θ◦.
Consequently,

∀θ ∈ Θ \ {θ◦}, µk,i(θ)
a.s.−−→ 0, (2.32)

which in turn implies (2.26). ■

2.4.3 Results on Variations

Arithmetic social learning

The next result [21, 22] states that agents can discover the true hypothesis θ◦ with full
confidence under the arithmetic average fusion-based non-Bayesian social learning
(NBSL) strategy as well.

25



Social Reasoning

Theorem 2.2 (Arithmetic truth learning). Under Assumptions 2.1 and 2.2, the
social learning algorithm (2.7)–(2.13) with arithmetic averaging allows each agent
k to learn the truth with probability 1, i.e.,

µk,i(θ◦) a.s.−−→ 1. (2.33)

However, the proof of Theorem 2.2 relies on martingale arguments [21, 22] which does
not provide any information about the speed of learning. It turns out the analysis
for arithmetic averaging is more involved compared to the analysis for geometric
averaging. In Chapter 3, we tackle this problem and provide results for the learning
rate of arithmetic averaging for social learning.

Adaptive social learning

In contrast to Theorems 2.1 and 2.2 where the beliefs converge to the truth almost
surely, in the adaptive social learning (ASL) strategy defined by steps (2.16) and (2.9),
the beliefs will have everlasting random fluctuations that are necessary for keeping
adaptation alive. To see the difference between NBSL and ASL, let us introduce the
log-belief ratio vector

λi(θ) ≜ [λ1,i(θ), . . . ,λK,i(θ)]T (2.34)

with individual entries defined as

λk,i(θ) ≜ log µk,i(θ
◦)

µk,i(θ)
. (2.35)

Equations (2.7)–(2.9) imply that the vector λi(θ) evolves according to the stochastic
linear recursion

λi(θ) = AT
(
λi−1(θ) + xi(θ)

)
, (2.36)

where xi(θ) ≜ [x1,i(θ), . . . ,xK,i(θ)]T is the vector of log-likelihood ratios (LLRs) at time
instant i:

xk,i(θ) ≜ log Lk(ξk,i|θ
◦)

Lk(ξk,i|θ)
. (2.37)

In ASL, the modified adaptation step (2.16) alters the log-belief ratio recursion (2.36) to

λi(θ) = AT
(
(1− δ)λi−1(θ) + βxi(θ)

)
. (2.38)

If we iterate this recursion over time, by standard arguments, we arrive at the following
result from [14].
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Theorem 2.3 (ASL Convergence in distribution). Under the ASL strategy (2.16)
and (2.9), the log-belief ratios converge in distribution to the following absolutely
convergent series:

λi(θ)
dist.−−→β

∞∑
j=1

(1− δ)j−1(AT)jxj(θ). (2.39)

This result implies that the random fluctuations of ASL have a regular behavior in the
limit. In particular, the limit of the expectation exists and is given by the following
expression.

Corollary 2.1 (Expected log-belief ratio in ASL). Theorem 2.3 implies that the
log-belief ratios converge in the mean, i.e.,

lim
i→∞

E[λi(θ)] = β

1− δ

(
(I − (1− δ)AT)−1 − I

)
d(θ) (2.40)

where d(θ) ≜ [d1(θ), d2(θ), . . . , dK(θ)]T is the vector of network KL divergences.

Proof. Since the series on the RHS of (2.39) is uniformly integrable, the expectation on
λi(θ) converges to the expectation of the RHS of (2.39). The result then follows from
the fact that E[xj(θ)] = d(θ) for any time j, and from the closed-form expression for
the series of absolutely convergent matrices. ■
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3 Information Fusion

3.1 Introduction1

Following the introductory material in the previous two chapters, the main contribu-
tions of this dissertation start from this chapter onward. The first problem we address
is to compare the arithmetic (AA) and geometric (GA) averaging strategies for informa-
tion fusion. Since AA and GA have different attributes that can be useful for different
applications, as discussed in Chapter 2, it becomes critical to attain a more detailed
understanding of their performance. In particular, it is important to examine how
much gain or loss in learning rate the distributed system can attain based on its use of
the AA or GA fusion rule, and how this gap is influenced by the graph topology. Some
earlier studies have been pursued in the literature, however, they are limited in scope
in the sense that:

• Only one step of fusion is studied [37, 43, 44];

• The analysis is restricted to well-behaved likelihood functions like Gaussian or
Poisson distributions [37, 44–46].

Moreover, in the context of social learning, the asymptotic learning rate of social learn-
ing for geometric averaging is already well-established (recall Theorem 2.1). However,
results for arithmetic averaging are scarce. An upper bound for the asymptotic learning
rate of AA is given in [47]. Even though one can conclude from these earlier stud-
ies [24, 47] that GA is faster than AA for learning the truth, the performance difference
is still not clearly established in the literature.

To that end, in this chapter, we study the repeated application of AA and GA in social
learning without confining to specific distributions. While doing so, we analyze the

1The material in this chapter is based on [42].

31



Information Fusion

performance gap between AA and GA learning rates in detail. In particular, for social
learning, we arrive at the following results.

3.1.1 Contributions

• In Theorem 3.2, we prove that the agents learn the truth exponentially fast with
the AA fusion rule under the standard diffusion algorithm [7]. Furthermore, the
decay (i.e., learning) rate of beliefs over a wrong hypothesis is constant and does
not depend on the agent.

• In Lemma 3.1, we provide upper and lower bounds for the decay rate using super-
additive and subadditive functions on matrices. Also, an interesting “inept agent
phenomenon” is discovered by using an appropriate superadditive function.

• We provide a variational lower bound on the gap between the decay rates of
AA and GA in Theorem 3.3. The bound involves the Dobrushin coefficient [48,
Chapter 2.7] as a network connectivity parameter. If the network is geometrically
ergodic [48] (for which the Dobrushin coefficient is strictly smaller than 1), then
the gap is 0 if, and only if, the agents observe exactly the same data. Otherwise
GA performs better in terms of learning rate.

• For the special case of rank-one combination matrices, which includes architec-
tures with fusion center in terms of performance, the exact decay rate of AA in
closed form is given in Corollary 3.3.

• For exchangeable networks, where no permutation of data across agents can
change the dynamics, we also provide a closed form expression for the gap be-
tween the decay rates of AA and GA in Theorem 3.4.

3.2 Existence of Asymptotic Decay Rates

To measure how fast the beliefs converge to the truth (i.e., how fast µk,i(θ◦)→ 1 and
µk,i(θ ̸= θ◦)→ 0), for each k, it is sufficient to study the asymptotic behavior of agent
k’s belief on a false hypothesis θ ̸= θ◦. More precisely, we will study the exponential
decay rates of these beliefs, defined as

ρk(θ) ≜ − lim sup
i→∞

1
i

logµk,i(θ). (3.1)

In this section, we show under the diffusion-based arithmetic social learning rule
that exact limits exist for (3.1) with lim sup replaced by lim and that these limits are
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independent of the agent index k. That is, we will show that

ρ(AA)(θ) ≜ lim
i→∞
−1
i

logµk,i(θ) (3.2)

exists almost surely and does not depend on k. This means that the beliefs on false
hypotheses decay exponentially at the same rate for all agents.

3.2.1 Asymptotic Decay Rate of Arithmetic Social Learning

In comparison to GA-diffusion, the analysis for AA-diffusion is more involved. This is
because, as shown in Chapter 2, GA-diffusion is amenable to an analysis that studies
the evolution of log-belief ratios, and can benefit from an application of the strong law
of large numbers. Unfortunately, a similar analysis is not possible for AA-diffusion — if
we attempt to study logµk,i(θ) directly, we end up with

logµk,i(θ) = log
( ∑
ℓ∈Nk

aℓkψℓ,i(θ)
)
, (3.3)

which does not provide a simple-to-analyze dynamical system like we had with (2.36).
Thus, we need to resort to different methods in the following. The authors of [47]
approached the problem of finding ρ(AA) by linearizing the dynamical system (3.3).
With this method, they were able to lower bound ρ(AA) by the Lyapunov exponent of
the linearized version. We take a different approach by constructing extremal processes
that bound µk,i(θ).

Constructing the Extremal Process

We wish to simplify the analysis of the AA algorithm by obtaining an extremal process
{νk,i}, which eventually remains above {µk,i}with probability 1. Studying {νk,i}will
then lead to a bound on the decay rate for AA-diffusion. With this aim, recall that
our setting lies in the probability space (Ω,F ,P), where Ω represents the space of all
data sequence realizations {ξk,i} over time, F represents the σ-field generated by the
sequence of data, and P represents the probability measure over sample paths ω ∈ Ω.
In light of Theorem 2.2, we select ϵ > 0 and define the event that all µk,i(θ◦) lie above
1− ϵ eventually as

G(ϵ) ≜ {ω ∈ Ω : ∃i0 µk,i(θ◦) ≥ 1− ϵ, ∀i > i0, ∀k}. (3.4)

We then observe that P (G(ϵ)) = 1 as a consequence of Theorem 2.2. Note that G(ϵ) can
also be interpreted as the event that there exists an i0(ω) — which is a random variable
since it depends on ω — such that for all agents the true beliefs remain greater than
1 − ϵ after ith

0 iteration. We now restrict ourselves to G(ϵ) and study the evolution of
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{µk,i} under such restriction.

Consider a false hypothesis θ ̸= θ◦. We study the pathwise trajectories of {µk,i(θ)} for
an outcome in G(ϵ), that is, we pick an ω ∈ G(ϵ). According to the definition of G(ϵ),
there exists an i0(ω) such that for all i > i0(ω):

µk,i(θ) =
∑
ℓ∈Nk

aℓk
µℓ,i−1(θ)Lℓ(ξℓ,i|θ)∑
θ′ µℓ,i−1(θ′)Lℓ(ξℓ,i|θ′)

≤
∑
ℓ∈Nk

aℓk
µℓ,i−1(θ)Lℓ(ξℓ,i|θ)
(1− ϵ)Lℓ(ξℓ,i|θ◦) . (3.5)

Let us define the likelihood ratio of the freshly observed data by agent k at time i
between the hypotheses θ and θ◦

rk,i(θ) ≜
Lk(ξk,i|θ)
Lk(ξk,i|θ◦) (3.6)

Then, we define the extremal process {νk,i} as the process that evolves according to
the recursion

νk,i(θ) ≜ (1− ϵ)−1 ∑
ℓ∈Nk

aℓkνℓ,i−1(θ)rℓ,i(θ) (3.7)

for all i ≥ i0(ω) and with νk,i0(θ) = µk,i0(θ). Comparing (3.7) with (3.5), we see that
{µk,i(θ)} is upper bounded by {νk,i(θ)} for all i ≥ i0(ω).

Remark 3.1. For the rest of the chapter, we fix a false hypothesis θ ̸= θ◦ and omit θ
as an argument for brevity. This is because the analysis is the same for all µk,i(θ).
We write the dependency on θ whenever we feel a need to emphasize them.

The transition from νk,i−1 to νk,i given by (3.7) is a random linear transform. Let
νi ≜ [ν1,i, . . . ,νK,i]T and define the diagonalK ×K random diagonal matricesRi with
their kth diagonal element being rk,i. Then for all ω ∈ G(ϵ), expression (3.7) leads to
the following vector relation:

νi = (1− ϵ)−1(ATRi)νi−1, ∀i > i0(ω). (3.8)

Equation (3.8) highlights that the asymptotic behavior of the random matrix product

Yi ≜
i∏

j=1
(ATRj) = ATRiA

TRi−1 . . . A
TR1 (3.9)

plays an important role. Moreover, observe that since {Ri} is a stationary sequence,
the asymptotic behavior remains unchanged under any time shift. Hence, starting the
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product from j = 1 in equation (3.9) is without loss of generality. We now turn our
attention to the analysis of the random matrices {Yi}.

Asymptotic Behavior of Random Matrix Products

The asymptotic behavior of random matrix products is an important and challenging
problem with a long history, which includes the preliminary study [49], and later the
seminal work [50]. Although some results exist under certain assumptions on the struc-
ture of the random matrices to be multiplied, the problem remains open in general.
One difficulty is that the non-commutativity of matrices under multiplication prevents
the use of well-known convergence theorems such as the law of large numbers.

Extending the result of [50], reference [51] studied the more general case of “subadditive
processes”2, and derived, under some fairly general conditions, an ergodic theorem
known as Kingman’s subadditive ergodic theorem [51]. The analysis of random matrix
products turns out to be a special case of this result.

Theorem 3.1 (Kingman’s subadditive ergodic theorem [51]). Consider a station-
ary sequence of random matrices {Xi} and suppose that the elements of each Xi

are positive and that their logarithms have finite expectations. Let Yi ≜
∏i
j=1 Xj .

Then, the limit

γ = lim
i→∞

1
i

log [Yi]ℓk (3.10)

exists and is finite almost surely and in the mean, and does not depend on ℓ or k.
Furthermore, it holds that

Eγ = lim
i→∞

1
i
E log [Yi]ℓk . (3.11)

We now adapt the above theorem to our setting. First of all, observe that the {Ri} is
an i.i.d. sequence, and therefore the {ATRi} is also i.i.d., and hence, stationary. Note
that we cannot simply replace the Xi’s with ATRi’s because the matrix AT need not
have all positive entries. However, A is a primitive matrix and thus there must exist
some n ≥ 1 such that every entry of An is strictly positive [39, Chapter 8]. Using this
observation, we arrive at the following corollary.

2A subadditive process is a random sequence {yi} that satisfies the inequality yi+j ≤ yi + yj for all
positive integers i and j.
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Corollary 3.1 (Limit of the random matrix product). Consider Yi =∏i
j=1(ATRj). Under Assumption 2.1, the finite limit

γ = lim
i→∞

1
i

log [Yi]ℓk = lim
i→∞

1
i
E log [Yi]ℓk (3.12)

exists almost surely, is a constant, and does not depend on ℓ or k.

Proof. See Appendix 3.A. ■

Using Corollary 3.1, we are able to characterize the asymptotic decay rate for AA-
diffusion and conclude this section.

Theorem 3.2 (Asymptotic decay rate of AA-diffusion). For any agent k, it holds
almost surely:

ρ
(AA)
k (θ) = − lim

i→∞

1
i

logµk,i(θ) = −γ(θ) (3.13)

for γ(θ) < 0.

Proof. See Appendix 3.B. ■

Theorem 3.2 states that if AA-diffusion (Algorithm 2.2) is executed, the beliefs on a
false hypothesis θ decay exponentially almost surely, and the decay rate is constant
and is the same among all agents. Note, however, that the decay rate may vary across
θ. This is because γ = γ(θ) is the limit pertaining to the i.i.d. products of the matrices
ATRi(θ), whereRi(θ) is defined in terms of the rk,i(θ) — see (3.7).

3.3 Bounds on the Asymptotic Decay Rate

Kingman, in his original work [51] that introduces the subadditive ergodic theorem,
writes the following about the constant γ:

“...Pride of place among the unsolved problems of subadditive ergodic theory must go to
the calculation of the constant γ... In none of the applications described here is there an
obvious mechanism for obtaining an exact numerical value, and indeed this usually
seems to be a problem of some depth...”

To the best of our knowledge, no standard machinery exists to date for this end. There-
fore, we make use of the special structure of the matrix ATRi to obtain bounds for γ
in Sections 3.3.2 and 3.3.3. But first we provide some simple upper and lower bounds
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that hold for the general case.

3.3.1 Bounds Based on Subadditivity

First, it is useful to discuss why products of random matrices are related to subadditive
processes. Let ∥X∥ denote any matrix norm that is submultiplicative, i.e., for any X
and Y

∥XY ∥ ≤ ∥X∥∥Y ∥. (3.14)

For our problem at hand, replacingX , Y withY j
i , Y m

j whose general definition is given
as

Y m
i ≜

m∏
t=i+1

(ATRt), (3.15)

and taking the logarithms of the both sides yields the subadditive relation

log ∥Y m
i ∥ ≤ log ∥Y j

i ∥+ log ∥Y m
j ∥. (3.16)

A well-known result pertaining to subadditive functions is Fekete’s lemma [52], which,
in our context, states that

lim
i→∞

1
i

log ∥Yi∥ = inf
i

1
i

log ∥Yi∥, (3.17)

whereYi is defined in (3.9). In fact, this observation is the starting point of the work [50]
on random matrix products. Now, consider the norm of matrices with non-negative
entries and let ∥X∥1 ≜ maxℓ

∑
k[X]kℓ, which is submultiplicative. It is then immediate

from Corollary 3.1 and (3.17) that for any time instant j:

γ = lim
i→∞

1
i
E log[Yi]11

≤ lim
i→∞

1
i
E log ∥Yi∥1

(3.17)= inf
i

1
i
E log ∥Yi∥1

≤ 1
j
E log ∥Yj∥1, (3.18)

which yields an upper bound for γ.

For the lower bound, we aim to create a supermultiplicative process3. Let ∥X∥− ≜
minℓ

∑
k[X]kℓ be the minimum column sum of the matrix X. Note that this is not a

3A supermultiplicative process is a sequence {yi} that satisfies the inequality yi+j ≥ yi · yj for
all positive integers i and j. Similarly, a submultiplicative process is a sequence {yi} that satisfies the
inequality yi+j ≤ yi · yj for all i and j.

37



Information Fusion

norm. However, it is supermultiplicative for non-negative matrices, i.e.,

∥XY ∥− ≥ ∥X∥−∥Y ∥−. (3.19)

We then obtain the following result.

Lemma 3.1 (Bounds based on subadditivity). For any i, j ≥ 1,

1
i
E
[

log ∥Yi∥−
]
≤ γ ≤ 1

j
E
[

log ∥Yj∥1
]
. (3.20)

Proof. The upper bound follows directly from (3.18). For the lower bound, observe that
− log ∥Yi∥− is a subadditive process. We then have, once again due to Fekete’s lemma,

sup
i

1
i
E log ∥Yi∥− = lim

i→∞

1
i
E log ∥Yi∥−

= E
[

lim
i→∞

1
i

log ∥Yi∥−

]
= γ. (3.21)

where the interchange of the limit and expectation operations is due to the general
form of the subadditive ergodic theorem — see Theorem 3.5 in Appendix 3.C. ■

We point out that ∥·∥− and ∥·∥1 can be replaced with any suitable functions on positive
matrices that are super/submultiplicative, respectively; and satisfy the conditions of
the subadditive ergodic theorem in Appendix 3.C. This way, one can obtain other lower
and upper bounds for the rate of AA-diffusion using a method similar to the approach
in Lemma 3.1.

In light of the above observation, we remark that ∥ · ∥− can also be replaced with an
element of Yi, e.g., with any mapping Yi 7→ [Yi]kk, as long as it remains strictly positive
for all i — this is to ensure that the logarithm remains finite. It can be verified that
[Yi]kk is supermultiplicative as long as Yi’s are non-negative. Recall from Sec. 2.1.1
that at least one agent k◦ has a self-loop, that is, ak◦k◦ > 0. The self-loop assumption
ensures that [Yi]k◦k◦ remains strictly positive. Then, according to Lemma 3.1, we have

E log[Y1]k◦k◦ = log ak◦k◦ + E log rk◦,1 ≤ γ (3.22)

which, by Theorem 3.2, implies that

ρ(AA) ≤ − log ak◦k◦ − E log rk◦,1

= − log ak◦k◦ +DKL(Lk◦(·|θ◦)||Lk◦(·|θ)). (3.23)
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The inequality (3.23) gives rise to an interesting observation of the learning model
under Algorithm 2.2.

For a small δ > 0, suppose that (i) ak◦k◦ = 1 − δ, and (ii) DKL(Lk◦(·|θ◦)||Lk◦(·|θ)) ≤ δ.
Here, (i) suggests that agent k◦ is highly self-confident with a self-loop close to 1,
whereas (ii) suggests that agent k◦ has limited learning abilities with small informa-
tiveness δ. For this special case, observe that

ρ(AA) ≤ − log(1− δ) + δ ≤ δ/(1− δ) + δ (3.24)

is also small. Since all agents learn the truth at the same rate ρ(AA) by Theorem 3.2, we
conclude that even a single agent k◦ can drastically decrease the learning ability of the
whole network.

This phenomenon can be avoided under GA-diffusion as follows. Recall from Theo-
rem 2.1 that asymptotic learning rate under Algorithm 2.1 is given by

ρ(GA) =
K∑
k=1

vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|θ)). (3.25)

If the remaining agents k ̸= k◦ do not trust agent k◦, i.e., if ak◦k’s are small, then the
Perron entry vk◦ can be kept small as well. It is evident from (3.25) that such isolation
of agent k◦ from the network will preserve (and might even boost) the learning rate
of the remaining agents. This observation is consistent with the numerical results in
Section 3.4.

3.3.2 Bounds for Distributed Inference

In this section, we take advantage of the special structure of {Yi} in our distributed
setting and derive bounds for γ. To that end, observe first from (3.9) that

[Yi]1k = rk,i

K∑
ℓ=1

[Yi−1]1ℓakℓ. (3.26)

This implies that

log[Yi]1k = log rk,i + log
(

K∑
ℓ=1

[Yi−1]1ℓakℓ

)
, (3.27)

and averaging over the network with weights vk yields

K∑
k=1

vk log[Yi]1k =
K∑
k=1

vk log rk,i +
K∑
k=1

vk log
∑
ℓ

[Yi−1]1ℓakℓ. (3.28)
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We subtract
∑K
k=1 vk log[Yi−1]1k from both sides of this equation to obtain

K∑
k=1

vk log [Yi]1k
[Yi−1]1k

=
K∑
k=1

vk log rk,i +
K∑
k=1

vk log
∑
ℓ[Yi−1]1ℓakℓ
[Yi−1]1k

. (3.29)

If we take the time average of (3.29) from 2 to i, the left-hand side becomes a telescoping
sum where the intermediate terms cancel each other, and we arrive at the following
relation:

1
i

K∑
k=1

vk log [Yi]1k
[Y1]1k

= 1
i

i∑
j=2

( K∑
k=1

vk log rk,j
)

+ 1
i

i∑
j=2

K∑
k=1

vk log
∑
ℓ[Yj−1]1ℓakℓ
[Yj−1]1k

. (3.30)

Assume [Y1]1k > 0 for simplicity. Note that there is no loss of generality here since
the strong connectivity assumption on the network ensures the primitiveness of the
combination matrix A which in turn ensures [Y1]1k to be strictly positive eventually—
see Appendix 3.A. The left-hand side tends to γ by Corollary 3.1 and Theorem 3.2, and
since the rk,i are i.i.d., the first term on the right-hand side tends to its mean by the law
of large numbers and is equal to the negative of the decay rate of GA-diffusion from
Theorem 2.1. In other words,

γ =
K∑
k=1

vkE[log rk,j ] + lim
i→∞

1
i

i∑
j=2

K∑
k=1

vk log
∑
ℓ[Yj−1]1ℓakℓ
[Yj−1]1k

(3.31)

and accordingly,

ρ(GA) − ρ(AA) = lim
i→∞

1
i

i∑
j=2

K∑
k=1

vk log
∑K
ℓ=1[Yj−1]1ℓakℓ

[Yj−1]1k
(3.32)

The above equation quantifies the gap between the decay rates. The gap turns out to
be the difference of two KL divergences averaged over time. To see this, let u denote
the probability vector obtained by normalization of the first row of Y , i.e.,

[ui]k ≜
[Yi]1k∑
ℓ[Yi]1ℓ

. (3.33)

Then, it follows that

ρ(GA) − ρ(AA) = lim
i→∞

1
i

i∑
j=2

[
DKL(v||uj−1)−DKL(v||Auj−1)

]
(3.34)

Equation (3.34) has an interesting interpretation. Note that Auj−1 is another probabil-
ity vector that is obtained by passing uj−1 through the Markov matrix A. Furthermore,
Av = v is the unique invariant distribution of the kernel A and thus the difference
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term in (3.34) is equal to

ρ(GA) − ρ(AA) = DKL(v||uj−1)−DKL(Av||Auj−1). (3.35)

The well-known data processing theorem [53] ensures that this difference is non-
negative. Hence,

Corollary 3.2. Asymptotic learning rate under geometric averaging based social
learning (Algorithm 2.1) is always larger than the rate under arithmetic averaging
based social learning (Algorithm 2.2). Namely,

ρ(GA) ≥ ρ(AA) (3.36)

holds almost surely.

The only case where the limit in (3.34) — the performance gap — tends to zero is
when DKL(v||ui) → 0, or simply when ui → v. We will show that if the network has
sufficient connectivity, this can only happen when all agents receive the same data,
i.e., rk,i = rℓ,i for all agents k and ℓ. It is obvious that in this case most fusion methods,
and in particular AA and GA, are equivalent. In fact, there is no need for an agent to
communicate with its neighbors — every neighbor is equivalent to the agent itself.

If the network is connected enough, and when the agents do not observe the same
data, ρ(GA) is strictly greater than ρ(AA), and the gap is quantified as the limit term
in (3.34). To study this term, we verify that the {ui} can be modeled in terms of a
Markov chain. We denote the K-dimensional probability simplex as SK , and define
the time-homogeneous transition map T : SK × RK×K → SK as

T (u,R) ≜ RAu∑
ℓ[RAu]ℓ

(3.37)

whereR is the diagonal matrix with [R]kk = rk ≜ rk,1 due to time-homogeneity. Note
that the ui’s in (3.34) obey this map with ui = T (ui−1,Ri), and withRi independent
of ui−1. It can be verified that the Markov chain governed by the mapping T has at
least one invariant distribution Q on SK , i.e., if u has distribution Q, so has T (u,R) —
this comes from the observation that T is Feller continuous and Krylov-Bogolyubov
theorem for compact spaces [54]. However, it may be a futile attempt to find such
invariant distributions. Furthermore, it is not certain if there is a unique invariant
distribution although the limit in (3.34) exists. Hence, we resort to a different method
and study a lower bound for the gap.

Since the state space of the Markov chain SK is compact, there must exist a u0 and a
small neighborhood V0 around it that is visited infinitely often. So, the limit in (3.34) is
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lower bounded by

lim
i→∞

1
i

i∑
j=2

[
DKL(v||uj−1)−DKL(v||Auj−1)

]
≥ inf

u∈V0
E[DKL(v||u1)−DKL(v||Au1)]

≥ inf
u∈SK

E[DKL(v||u1)−DKL(v||Au1)]

(3.38)

with u1 = T (u,R). Moreover, we can use the strong data processing inequality [55] to
obtain a further lower bound. It is useful to give the following definition.

Definition 3.1 (Contraction coefficient [55]). Let AK×K be a probability transi-
tion matrix. Then the contraction coefficient associated with A is given by

ηA ≜ sup
u,π∈SK
u̸=π

{
DKL(Au||Aπ)
DKL(u||π)

}
≤ 1. (3.39)

The coefficient ηA is lower bounded by the second largest absolute eigenvalue of
A [55]. Hence, dense graphs usually lead to lower ηA that is close to 0 in value, while
sparse graphs usually lead to ηA that is close to 1 in value. The strong data processing
inequality implies that

DKL(Au||Aπ) ≤ ηADKL(u||π) (3.40)

for all K-dimensional probability vectors u, π. Applying this inequality to (3.38), we
obtain

ρ(GA) − ρ(AA) ≥ (1− ηA) inf
u∈SK

EDKL(v||u1). (3.41)

Remark 3.2. Applying the strong data processing inequality directly to (3.34), it is
evident that

lim
i→∞

1
i

i∑
j=1

DKL(v||uj) ≥ ρ(GA) − ρ(AA) ≥ (1− ηA) lim
i→∞

1
i

i∑
j=1

DKL(v||uj) (3.42)

Therefore, when ηA = 0, we have equality. This corresponds to the case when A is
rank one, with every column of A being v. For this special case, we will show in
Sec. 3.3.3 that γ has a simple form.

We now focus on the infimization problem that shows up in (3.41). Writing explicitly, it
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is equivalent to

inf
u

π=uAT

E
[

K∑
k=1

vk log vk
πkrk

+ log(
K∑
k=1

πkrk)
]

= inf
u

π=uAT

E
[

K∑
k=1

vk log vk
πk

+ log
( K∑
k=1

πkrk
)]

+ρ(GA)

≥ inf
π

K∑
k=1

vk log vk
πk

+ E
[

log
( K∑
k=1

πkrk
)]

+ρ(GA)

(3.43)

We give the Karush-Kuhn-Tucker (KKT) conditions for this problem in the next result.

Lemma 3.2 (Optimality conditions). The KKT conditions for the optimization
problem in (3.43), namely the infimization of

F (π) ≜
K∑
k=1

vk log vk
πk

+ E
[

log
( K∑
k=1

πkrk
)]

+ ρ(GA), (3.44)

are given by
vk
πk

= E
[

rk∑K
ℓ=1 rℓπℓ

]
∀k. (3.45)

Proof. See Appendix 3.D. ■

Note that F (π) cannot approach the infimum over the boundary of theK-dimensional
simplex as F (π) tends to infinity close to the boundary. Using the KKT conditions

above, and replacing
vk
πk

with E
[ rk∑

ℓ πℓrℓ

]
in the first summation term in F (π), we

consider the infimization of

G(π) ≜
K∑
k=1

vk logE
[

rk∑K
ℓ=1 πℓrℓ

]
+ E

[
log

( K∑
k=1

πkrk
)]

+ ρ(GA). (3.46)

Observe that infπ F (π) ≥ infπ G(π). We summarize the above results in the theorem
below.

Theorem 3.3 (Variational lower bound for the gap). The performance gap can
be lower bounded as

ρ(GA) − ρ(AA) ≥ (1− ηA) inf
π
F (π) ≥ (1− ηA) inf

π
G(π) (3.47)

with F (π) defined in (3.44) and G(π) in (3.46). Furthermore if ηA < 1, then
ρ(GA) = ρ(AA) if and only if rk=rℓ for all k, ℓ.

Proof. See Appendix 3.E. ■
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Remark 3.3. The bound we have provided in this section partially captures the
effect of network structure through the quantity ηA. It is known that ηA ≤ DobA,
the Dobrushin coefficient of A [55]:

DobA ≜ max
k,ℓ

1
2∥ak − aℓ∥1 (3.48)

where ak denotes the kth column of A. Furthermore, ηA < 1 if and only if
DobA < 1 [55, 56]. Hence, for the broad class of combination matrices where
DobA < 1, i.e., geometrically ergodic ones [48, Chapter 2.7], the bound (3.47) is
non-trivial.

Theorem 3.3 points out that the decay rate of AA-diffusion is dependent on network
connectivity via ηA as opposed to the decay rate of GA-diffusion, whose decay rate only
depends on the network centrality, i.e., Perron vector v. In [47], the authors study the
effect of network regularity under AA-consensus on the upper bound ρ(GA). Different
from their work, the bound on the performance gap in Theorem 3.3 captures the effect
of network connectivity.

3.3.3 Special Networks

The bounds given in the previous sections are in variational form. Although we have
studied certain characteristics of these bounds, i.e., found the KKT conditions, still,
the bounds are dependent on the joint distribution of the data across the users —
recall that the decay rate of GA-diffusion, ρ(GA), has a closed form expression and only
depends on the marginals. Moreover, the extremal points satisfying the KKT conditions
are difficult to find in general. Hence, we study two special cases in this section.

Rank-one Combination Matrices

When A is a rank one matrix, it turns out that ρ(AA) has a closed form. In this case, A
can be written as A = v1T

K . Then,

ATRAT = 1Kv
TR1Kv

T

=
( K∑
k=1

vkrk
)
1Kv

T

=
( K∑
k=1

vkrk
)
AT (3.49)
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and it follows that

Yi = (ATRi)
i−1∏
j=1

(ATRj) = (ATRi)
i−1∏
j=1

( K∑
k=1

vkrk,j
)
. (3.50)

If we choose k, ℓ such that aℓk > 0, it holds that

1
i

log[Yi]kℓ = 1
i

i−1∑
j=1

log
( K∑
k=1

vkrk,j
)

+ 1
i

log(aℓkrℓ,i) (3.51)

and from the law of large numbers

lim
i→∞

1
i

log[Yi]kℓ = E
[

log
( K∑
k=1

vkrk
)]
. (3.52)

Corollary 3.1 and Theorem 3.2 then lead to the following statement.

Corollary 3.3 (Exact rate under rank-one topologies). Under network architec-
tures with rank-one combination matrices, including fully-connected networks
and federated architectures, the learning rate of arithmetic social learning is given
by

ρ(AA) = −γ = −E
[

log
( K∑
k=1

vkrk
)]
. (3.53)

Notice that Corollary 3.3 implies the performance gap between geometric and arith-
metic social learning algorithms is equal to the expectation of a Jensen’s inequality
gap

ρ(GA) − ρ(AA) = E
[

log
( K∑
k=1

vkrk
)
−

K∑
k=1

vk log rk
]

(3.54)

for rank-one combination matrices. Here, recall from Chapter 2 that fully-connected
networks with rank-one combination matrices are equivalent to architectures with fu-
sion center in terms of performance, because each agent computes the same weighted
average of all beliefs across the network. In this sense, each agent acts like a fusion
center. Therefore, Corollary 3.3 also gives the learning rate of inference with federated
architectures.

Exchangeable Networks

In this special case, we assume that the data is exchangeable across the users. More
precisely, {ξ1, . . . , ξK} constitutes a set of exchangeable random variables.
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Definition 3.2 (Exchangeable random variables). A set of random variables is
called exchangeable if the distribution of ξ1, . . . , ξK remains unchanged under
any permutation over the index set, i.e., for all ξ1, . . . , ξk

P (ξ1 ≤ ξ1, . . . , ξK ≤ ξk) = P (ξσ1 ≤ ξ1, . . . , ξσK ≤ ξk) (3.55)

with σ being any permutation of {1, . . . ,K}.

Exchangeability is weaker than the i.i.d. assumption, as the data need not be indepen-
dent across the agents. Observe that exchangeable networks could be of particular
interest as they model fair networks — since exchangeability requires identical distri-
butions of data across the agents, no agent learns better than another if there was no
cooperation. For this particular example, we also assume that A is doubly stochastic,
i.e.,

∑
k aℓk = 1 as well. Then, it is easily seen that each element of the Perron vector

of A is vk = 1/K. Under this assumption, we are able to solve the KKT conditions of
problem (3.43).

Theorem 3.4 (Lower bound under exchangeable networks). If the data across
the agents is exchangeable and A is doubly stochastic, the Perron eigenvector v is
the unique solution of (3.43). Hence,

ρ(AA) ≤ ηAρ(GA) − (1− ηA)E
[

log
( 1
K

K∑
k=1

rk

)]
(3.56)

and, moreover,

ρ(GA) − ρ(AA) ≥ (1− ηA)
(
ρ(GA) + E

[
log

( 1
K

K∑
k=1

rk

)])

= (1− ηA)E
[

log
( K∑
k=1

1
K
rk
)
−

K∑
k=1

1
K

log rk
]

(3.57)

Proof. It immediately follows that r1, . . . , rK is also exchangeable. Also, the KKT
conditions in (3.45) imply

E

 r1π1∑
ℓ rℓπℓ

 = E

 r2π2∑
ℓ rℓπℓ

 (3.58)

and because of exchangeability,

E

 r1π1
r1π1 + r2π2 + s

 = E

 r1π2
r2π1 + r1π2 + s

 (3.59)
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where s ≜
∑
ℓ>2 rℓπℓ. Suppose that π1 > π2. The difference of the two terms in (3.59)

then becomes

E

 r1π1
r1π1 + r2π2 + s −

r1π2
r2π1 + r1π2 + s

=(π1 − π2)E

 r1r2(π1 + π2) + r1s

(r1π1 + r2π2 + s)(r2π1 + r1π2 + s)


(3.60)

Since we assumed π1 > π2, the difference in (3.59) must be strictly greater than zero.
A similar argument for π2 > π1 yields the same result. This implies π1 = π2, and by
symmetry, πk = πℓ for all k, ℓ. Therefore, π must be equal to vT. ■

It is seen from Theorem 3.4 that the lower bound on the performance gap increases as
the network becomes more connected, i.e., small ηA. Moreover, the Jensen’s inequality
gap in (3.54) and Theorem 3.4 increases when the observations become more diverse
across the agents. The performance gap drifts away from zero. This results in an
interesting observation: If the individual agents, or any subgroup of agents, have the
same learning abilities (implied by exchangeability), the overall learning speed of
the network decreases with respect to the increased amount of collaboration under
AA-diffusion. However, the learning abilities under GA-diffusion is not affected —
every agent in the network learns at the same speed regardless of the amount of
collaboration.

3.4 Numerical Simulations

In this section, we provide numerical results to study the gap between GA-based Alg. 2.1
and AA-based Alg. 2.2; and to study the effect of network connectivity on the decay
rate of AA-diffusion. We simulated the networks given in Figure 3.1a, 3.1b, 3.1c. All
networks consist of K = 10 nodes. The network 3.1a is 2-regular, 3.1b is 3-regular and
3.1c is not a regular graph. Recall that a graph is called D-regular when each vertex has
D neighbors.

Our first simulation compares the 2-regular and 3-regular networks. The combination
matrices are denoted by A2 and A3, and are set as follows. For an α ∈ [0, 1], if nodes
ℓ and k are connected, then [A2]ℓk = 1−α

2 and [A3]ℓk = 1−α
3 respectively; and [A2]ℓℓ =

[A3]ℓℓ = α. The other elements are necessarily set to zero. Observe that we ensure the
diagonal elements of A2 and A3 are the same and equal to α — this setting enables us
to compare the decay rates with the bound given in [47]. We have chosen α = 0.05.
Note that A2 and A3 are doubly stochastic and thus their Perron vectors v have entries
vk = 1/K. Moreover, we assume H = 2. Under the true hypothesis θ◦, the agents
observe exponential random variables with parameter 1, and under the alternative
hypothesis θ, each agent k observes exponential random variables with parameter
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(a) (b) (c)

Figure 3.1: The three networks consist of K = 10 nodes. (a) is a 2-regular network, (b) is
a 3-regular network and (c) is non-regular with 24 edges. Self-loops are omitted for visual
simplicity in all figures.

βk, with βk ∈ [0.500, 0.300, 0.025, 0.750, 1.200, 2.250, 0.900, 1, 0.250, 0.025]. For simplicity,
we assume that the data is independent across the agents.

The results of the first experiment are given in Figure 3.2i. We have plotted agent 1’s
belief decay rates on hypothesis θ, with AA and GA-diffusion algorithms (denoted
with the superscript AA and GA, respectively) and on networks 3.1a and 3.1b (denoted
with the subscript added to the algorithm description). For instance, the AA3 in the
superscript refers to the decay rate with AA-diffusion and on the 3-regular network
3.1b. First, observe the significant performance gap between GA and AA-diffusion
learning rates. As expected, the decay rate of GA-diffusion is not affected by the
network regularity — we know it only depends on the Perron vector v. However, the
AA-diffusion decay rate is visibly affected, which is expected according to Theorem 3.3.

We point out that in [47], the authors upper bounded the decay rate of AA with con-
sensus algorithm (not AA-diffusion) with αρ(GA). This is not true for AA-diffusion as
for our setting α = 0.05, ρ(GA) = 0.7261, and ρ(AA2), ρ(AA4) both seem to be above
αρ(GA) = 0.0363. This also shows that since the AA-diffusion decay rate is above the up-
per bound given for AA-consensus, the agents learn faster with the diffusion algorithm
than with consensus. This behavior is consistent with the results in [57], which showed
that diffusion strategies are superior to consensus strategies in terms of performance
in distributed estimation. Figure 3.2i complements this result in the sense that it
shows diffusion outperforms consensus in the AA-social learning setting as well. Such
distinction was not present for GA-social learning at least asymptotically. The diffusion
and consensus based geometric social learning algorithms have the same asymptotic
learning rate.

The second experiment involves an exchangeable network. To this end, we set βk = 3
for all k. Referring to the result in Theorem 3.4, we define

BA ≜ DobA ρ(GA) − (1− DobA)E
[

log
( 1
K

∑
k

rk

)]
. (3.61)
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Figure 3.2: (i) Comparison of the decay rates of different network connectivities. The su-
perscripts on the decay rates indicate the algorithm, and the network where we execute the
algorithm, e.g., AA2 means AA-diffusion is executed on the 2-regular network 3.1a with com-
bination matrix A2. The decay rates of GA-diffusion are the same for networks 3.1a and 3.1b
whereas they differ when AA-diffusion is run. (ii) The decay rates of the non-regular network
3.1c are plotted under AA and GA-diffusion in the exchangeable setting; and the closed form
boundBA is shown. (iii) Time-scaled minus log-belief of agent 1 in the fully connected network
with a rank-one combination matrix. This entity approaches the closed form expression we
provided in Corollary 3.3.

Recall that DobA was defined in (3.48). We simulated AA-diffusion on the non-regular
network 3.1c with its combination matrix chosen according to a lazy Metropolis rule
[58]. More precisely, we take B ≜ [bℓk] with bℓk = max{deg(ℓ), deg(k)}−1 for ℓ ̸= k and
bℓℓ = 1−

∑
k ̸=ℓ bℓk. Then, we set Anon = αI + (1− α)B. The matrix Anon is also doubly

stochastic, hence, its Perron vector is the same as networks 3.1a and 3.1b. We have
plotted the decay rates of agent 1 with the combination matrix Anon and also indicated
the bound BA in Figure 3.2ii. Since the Dobrushin coefficient DobA = 0.81, BA gives a
non-trivial bound.
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The third experiment includes a fully-connected network with combination matrix
aℓk = 1/K. Observe A is rank-one and from Corollary 3.3, we know

ρ(AA) = −E
[

log
( 1
K

∑
k

rk

)]
≈ 0.0457. (3.62)

The AA-diffusion decay rate corresponding to the final experiment is plotted in Figure
3.2iii and it is readily seen that the minus log-belief with time scaling approaches
0.0457.

The next part of this section consists of numerical examples where the “inept agent”
phenomenon is observed — recall the end of Section 3.3.1. We set the inept agent
to agent 1, and select β1 = 1, i.e., DKL(L1(·|θ◦)||L1(·|θ)) = 0. The other βk’s remain
the same as in the simulations in Figure 3.2i. The simulations take place over the
non-regular network 3.1c, and four different connecivity matrices Aα1 , Aα2 , Aα3 , Aα4

are set with the same lazy Metropolis rule in 3.2ii, with four different α values α1 = 0.01,
α1 = 0.5, α1 = 0.8, α4 = 0.95. Note that the Perron vector remains unchanged when we
change α, hence the decay rate of GA should also remain unchanged. This is observed
in Figure 3.3i. However, as α increases, the inept agent 1 becomes more self-confident
and the learning rate for AA decreases drastically, which is evident from Figure 3.3i.

For the remaining simulations, we assume that, under θ◦, agents observe standard
Gaussian random variables and under θ they observe unit-variance Gaussian ran-
dom variables with mean 10. The K ×K covariance matrix of the data under both
hypotheses is given by

Σ(c) ≜ c1K1T
K + (1− c)IK (3.63)

for a c ∈ [0, 1]. Observe that c = 1 corresponds to the case where all agents observe the
same data and c = 0 corresponds to the i.i.d. case. This setup ensures that the data is
exchangeable.

The following simulation aims to investigate the effect of network connectivity on the
decay rates of AA-diffusion under exchangeable networks. We choose c = 0.5, and the
network is simulated on D = 2,3,4,6-regular networks. The D regular networks are
constructed as follows: The neighbor of agent k is set as

Nk = {k − ⌊D/2⌋, . . . k − 1, k + 1, . . . , k + ⌈D/2⌉} mod K. (3.64)

Note that the 2-regular network constructed with this method is equivalent to that
in Figure 3.1a whereas the 3-regular network is different from the one in Figure 3.1b.
The connectivity matrices are set as in Figure 3.2i with the same α = 0.05. In line
with Theorem 3.4, Figure 3.3ii illustrates that the performance gap increases with
connectivity. Finally, we compare the decay rates under various joint distributions
under exchangeable setting. We simulate AA-diffusion under the same Gaussian

50



3.4 Numerical Simulations

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

α1 = 0.01

α2 = 0.5
α3 = 0.8

α4 = 0.95

Iterations (i)

(i)

0 1,000 2,000 3,000 4,000 5,000

42

44

46

48

50

52

2-reg

3-reg

4-reg
6-reg

Iterations (i)

(ii)

0 1,000 2,000 3,000 4,000 5,000

40

45

50

c = 0.9

c = 0.6

c = 0.4

c = 0

Iterations (i)

(iii)

Figure 3.3: (i) Numerical example for the “inept agent” phenomenon mentioned at the end
of Section 3.3.1. We have drawn the time-scaled minus log-beliefs, i.e., − 1

i logµ1,i of agent
1 over the network 3.1c and with connectivity matrices Aα1 , Aα2 , Aα3 , Aα4 . The red curves
correspond to the decay rates of GA-diffusion and the blue curves correspond to the decay rates
of AA-diffusion. The decrease in the AA-diffusion decay rate with respect to the increase in α is
evident. (ii) Comparison of different network connectivities in an exchangeable setting. The
red curves correspond to the decay rates of GA-diffusion and the blue curves correspond to the
decay rates of AA-diffusion simulated on 2,3,4,6-regular networks. It is clearly visible that the
decay rate decreases with network connectivity. (iii) Comparison of decay rates under different
joint distributions for the Gaussian setting. The red curves correspond to the decay rates of
GA-diffusion and the blue curves correspond to the decay rates of AA-diffusion simulated for
Σ(c), c = 0, 0.4, 0.6, 0.9.

setting for c = 0, 0.4, 0.6, 0.9. Recall that the covariance matrix was given by Σ(c) from
(3.63). We also observe that the decay rate increases when c increases, and in particular,
is equal to the decay rate under GA-diffusion for c = 1 — every agent observes same
data if c = 1.
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3.5 Concluding Remarks

In this chapter, we compared the decay rates of beliefs under arithmetic and geometric
averaging for social learning over networks. For arithmetic averaging strategies, we
established that the beliefs on wrong hypotheses decay exponentially almost surely,
and the decay rates are the same among all agents. We provided upper and lower
bounds for the decay rates, one being the decay rate corresponding to geometric
averaging (Corollary 3.2), while the other one revealing the network learning rate’s
sensitivity to individual agents.

We studied the performance gap between arithmetic and geometric averaging with a
formulation that permitted the use of the strong data processing inequality. We have
proved that for a broad class of networks, there is no performance gap if, and only if, all
agents observe the same data. We also obtained closed form bounds and expressions
for the performance gap for some special instances.

An interesting future direction is to examine how our results relate to the distributed
estimation and filtering. Such methods primarily focus on the inference of continuous
variables, and they typically rely on the fusion of point estimates. Nevertheless, they
can be interpreted in terms of fusion of probability density functions [35]. Therefore,
a natural question is the applicability of our results for social learning to that line
of work. Furthermore, all results in this work are asymptotic. In the subsequent
work [59], we established the asymptotically normal behavior of learning rates for both
arithmetic and geometric averaging under federated architectures. Employing the
Berry-Esseen theorem [60] and related tools on top of this work to understand finite
sample behaviors of social learning can be another interesting direction to study.

3.A Proof of Corollary 3.1

To make use of Theorem 3.1, we first need to ensure that the random matrices have
all positive entries. Recall that there must exist an n ≥ 1 such that every entry of An

is strictly positive. We choose the smallest such n. Moreover, the {rk,i} are strictly
positive with probability 1 as well — otherwise some of the KL divergences would be
infinite. We therefore replace Xi with the expression

X̃i ≜ A
TRn(i−1)+1 . . . A

TRni, (3.65)

which turn out to have all positive entries. To see this, observe that

[X̃i]11 =
∑

ℓ1,...,ℓn−1

aℓ11aℓ2ℓ1 . . . a1ℓn−1rℓ1,1 . . . r1,n. (3.66)
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Since A is primitive, there must exist ℓ1, . . . , ℓn−1 such that aℓ11 . . . a1ℓn−1 > 0. If we
choose such a path, we can observe that

[X̃i]11 ≥ aℓ11aℓ2ℓ1 . . . a1ℓn−1rℓ1,1 . . . r1,n. (3.67)

As mentioned, the rk,i are strictly positive and thus [X̃i]11 is strictly positive as well.
Similar arguments hold for other entries [X̃i]ℓk as well, which proves that all entries
of X̃i are positive. Note that the X̃i’s are also i.i.d.. The next step is to check if the
logarithms of the entries of X̃i have finite expectations. First of all, since E[Ri] = I and
theRi are i.i.d., it holds that

E[X̃i] = E[ATRn(i−1)+1 . . . A
TRni] = (AT)n, (3.68)

which further implies from Jensen’s inequality that

E[log[X̃]ℓk] ≤ logE[[X̃]ℓk] = log[An]kℓ ≤ 0. (3.69)

Therefore, the expectations of the logarithms are bounded from above. To check if
they are also bounded from below, if we take the logarithms of both sides in (3.67), we
obtain

E[log[X̃i]11] ≥ log(aℓ11aℓ2ℓ1 . . . a1ℓn−1) + E[log rℓ1,1] + · · ·+ E[log r1,n]. (3.70)

By finiteness of KL divergences, it holds that

E log rk,1 = −DKL(Lk(.|θ◦)||Lk(.|θ)) > −∞. (3.71)

Consequently, E[log[X̃i]11] is bounded from below. A similar argument holds for the
other terms E[log[X̃i]ℓk] as well.

Since the [X̃i]ℓk are strictly positive and their logarithms have finite expectations, we
can invoke Theorem 3.1 to obtain

γ̃ = lim
i→∞

1
i

log[Ỹi]ℓk (3.72)

with Ỹi ≜
∏i
j=1 X̃j . Since Ỹi = Yni, the above equation implies

γ = γ̃

n
= lim

i→∞

1
ni

log[Yni]ℓk = lim
j→∞

1
j

log[Yj ]ℓk. (3.73)

Moreover, since {ATRi} is an i.i.d. sequence, Kolmogorov’s zero-one law [40] implies
that the finite limit γ is almost surely a constant. Hence,

γ ≜ E[γ] = lim
i→∞

1
i
E
[

log[Yi]ℓk
]
, (3.74)
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and the proof is complete.

3.B Proof of Theorem 3.2

It is sufficient to establish the result for one agent k; a similar argument applies to the
other agents. We establish the proof in two parts by showing:

• (i) lim sup
i→∞

1
i

logµk,i ≤ γ,

• (ii) lim inf
i→∞

1
i

logµk,i ≥ γ.

Part (i) of the proof makes use of the extremal process {νi}. Selecting a δ > 0, we define
the events

H+
i0

(δ) ≜
{
ω ∈ Ω : ∃i1 ≥ i0,∀i ≥ i1,

1
i− i0

max
ℓ,k

log[Y i
i0 ]ℓk ≤ γ + δ

}
(3.75)

for every i0 ≥ 1 with

Y i
i0 ≜

i∏
j=i0+1

(ATRj). (3.76)

In words,H+
i0

(δ) is the event that the logarithms of all entries of Y i
i0 eventually become

smaller than (γ + δ)(i − i0). Since {ATRi} is i.i.d., Yi is stationary; and P
(
H+
i0

(δ)
)

does not depend on i0. Corollary 3.1 states that P
(
H+

0 (δ)
)

= 1, and we deduce that

P
(
H+
i0

(δ)
)

= 1. As any countable intersection of unit-probability events is also unit-

probability, we have P
(
H+(δ)

)
= 1 where

H+(δ) ≜
⋂
i0

H+
i0

(δ). (3.77)

Consider an ω ∈ G(ϵ) ∩H+(δ), with G(ϵ) defined in (3.4). Repeated application of (3.8)
yields

νi = (1− ϵ)i0−iY i
i0νi0 , ∀i ≥ i0(ω). (3.78)

Furthermore, since ω ∈ H+(δ) implies

[Y i
i0 ]ℓk ≤ e(i−i0)(γ+δ) (3.79)

for all i ≥ i1(ω),
νk,i ≤ e(i−i0)(γ+δ+ϵ′), ∀i ≥ i1(ω) (3.80)
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with some ϵ′ ≜ − log(1− ϵ). Thus,

lim sup
i→∞

1
i

logµk,i ≤ lim sup
i→∞

1
i

log νk,i ≤ γ + δ + ϵ′ (3.81)

for all ω ∈ G(ϵ) ∩ H+(δ). Since G(ϵ) andH+(δ) are both probability one events, so is
their intersection. This completes part (i) of the proof.

Part (ii) of the proof requires the construction of another extremal process {zk,i}, which
lower bounds {µk,i}. Similar to part (i), we define the events

H−
i0

(δ) ≜
{
ω ∈ Ω : ∃i1 ≥ i0,∀i ≥ i1,

1
i− i0

min
ℓ,k

log[Y i
i0 ]ℓk ≥ γ − δ

}
(3.82)

and
H−(δ) ≜

⋂
i0

H−
i0

(δ). (3.83)

Then, for any ω ∈ G(ϵ) ∩H−(δ), we have µk,i(θ) ≤ ϵ for i ≥ i0(ω) and

µk,i(θ) ≥
∑
ℓ∈Nk

aℓk
µℓ,i−1(θ)rℓ,i(θ)

1 + ϵ
∑

θ′ ̸=θ◦
rℓ,i(θ)

≥
∑
ℓ∈Nk

aℓk
µℓ,i−1(θ)rℓ,i(θ)

1 + ϵ
∑

θ′ ̸=θ◦

∑
ℓ rℓ,i(θ′) . (3.84)

We introduce the vector zi = [z1,i, z2,i, . . . ,zK,i]T and define its evolution for i ≥ i0 as

zi = (ATRi)zi−1, zi0 = µi0 . (3.85)

This implies that

1
i

logµk,i ≥
1
i

log zk,i −
1
i

i∑
j=i0

log
(

1 + ϵ
∑
θ′ ̸=θ◦

∑
ℓ

rℓ,j(θ′)
)

(a)
≥ 1

i
log zk,i − ϵ

1
i

i∑
j=i0

∑
θ′ ̸=θ◦

∑
ℓ

rℓ,j(θ′) (3.86)

where (a) follows from using log(1 + x) ≤ x. Observe that by the strong law of large
numbers

lim
i→∞

ϵ
1
i

i∑
j=i0

∑
θ′ ̸=θ◦

∑
ℓ

rℓ,j(θ′) = ϵK(H − 1)E[rℓ,j ]

= ϵK(H − 1). (3.87)
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Hence, proceeding similarly to the previous part we obtain that almost surely

lim inf
i→∞

1
i

logµk,i ≥ lim inf
i→∞

1
i

log zk,i − ϵK(H − 1)

≥ γ − δ − ϵK(H − 1). (3.88)

Since δ and ϵ are arbitrary, the proof is complete.

3.C Conditions for the Subadditive Ergodic Theorem

We first restate the subadditive ergodic theorem.

Theorem 3.5 (Subadditive ergodic theorem [51, Theorem 1]). Let {xij}i≤j be a
doubly indexed random sequence that satisfies the following conditions:

(i) The distribution of xij depends only on j − i.

(ii) xij ≤ xik + xkj , for all i ≤ k ≤ j.

(iii) 1
jE[x1j ] ≥ −κ for some constant κ and for all j ≥ 1.

Then, the finite limit

γ = lim
i→∞

1
i
x1i (3.89)

exists almost surely and in the mean, and furthermore,

E[γ] = lim
i→∞

1
i
E[x1i]. (3.90)

To use this result, we replace xij with− log ∥Y j
i ∥− (defined in (3.76)). Since {ATRi} is

an i.i.d. sequence, Y j
i is stationary and (i) is satisfied. In the relation

∥Y k
i ∥−∥Y

j
k ∥− ≤ ∥Y

j
i ∥−, (3.91)

taking the logarithm and negating both sides shows immediately that (ii) is satisfied.
The only remaining condition to verify is (iii), i.e., whether

E[− log ∥Yi∥−] ≥ −κi (3.92)

for some constant κ. We achieve this result by following similar steps to the proof
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of [51, Theorem 5]:

E[log ∥Yi∥−] ≤ E[log ∥Yi∥1]
(a)
≤ iE[log ∥Y1∥1]
≤ iE[log(K max

k,ℓ
[Y1]kℓ)]

≤ i
(
E
[∑
k,ℓ

(log[Y1]kℓ)+
]

+ logK
)

(b)
≤ iκ (3.93)

where (a) follows from subadditivity, and (b) follows from Assumption 1. Hence,
− log ∥Yi∥− satisfies the conditions of the subadditive ergodic theorem.

3.D Proof of Lemma 3.2

For π ∈ SK , it is known that [53] for some finite constant c, the KKT conditions are
given by

∂F

∂πk
= c, πk > 0 (3.94)

∂F

∂πk
≤ c, πk = 0. (3.95)

We however have to justify the interchange of differentiation and expectation. Observe
that

∂

∂πk
log

(∑
ℓ

πℓrℓ
)

= lim
ϵ→0

1
ϵ

(
log

(∑
ℓ

πℓrℓ + ϵrk
)
− log

(∑
ℓ

πℓrℓ
))

≤ rk∑
ℓ πℓrℓ

(3.96)

where we used the inequality log(1 + x) ≤ x. Since all the random variables in (3.96)

are uniformly bounded by
rk∑
ℓ πℓrℓ

, and E
[ rk∑

ℓ πℓrℓ

]
<∞, the dominated convergence

theorem [40] justifies interchanging differentiation and expectation. Therefore,

∂F

∂πk
= − vk

πk
+ E

[
rk∑
ℓ πℓrℓ

]
. (3.97)

Also, v, being the Perron vector of a primitive matrix A, has all strictly positive entries.
Hence, setting any vk = 0 will make F (π) infinite. Therefore, all πk must have positive
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values. As a result, from (3.94),

− vk
πk

+ E
[

rk∑
ℓ πℓrℓ

]
= µ. (3.98)

In this equation, multiplying both sides with πk and summing over each agent k, we
get µ = 0, which concludes the proof.

3.E Proof of Theorem 3.3

We first show that ρ(GA) = ρ(AA) implies rk = rℓ for all k, ℓ. Applying Jensen’s inequality
to exchange the logarithm and expectation, we observe that

G(π) ≥
∑
k

vkE
[

log
( rk∑

ℓ πℓrℓ

)]
+ E

[
log

(∑
k

πkrk
)]

+ ρ(GA) = 0. (3.99)

Since the logarithm is a strictly convex function, G(π) = 0 only when

logE
[

rk∑
ℓ πℓrℓ

]
= E

[
log rk∑

ℓ πℓrℓ

]
. (3.100)

In other words, G(π) = 0 only when
rk∑
ℓ πℓrℓ

is constant with probability one for all k.

This means that for any k, ℓ,

rk∑
ℓ πℓrℓ

∑
ℓ πℓrℓ
rm

= rk
rm

(3.101)

is also constant. Also, since by definition

E[rk] = E[rm] = 1, (3.102)

rk must be equal to rm with probability one. This shows that if rk ̸= rℓ for some k, ℓ
with non-zero probability, then G(π) is strictly positive. Also, due to the fact that

inf
u∈SK

E[DKL(v||u1)] ≥ inf
π
F (π) ≥ inf

π
G(π) > 0 (3.103)

and ηA < 1, Eq. (3.41) implies ρ(GA) > ρ(AA).

The other direction is more straightforward to establish. If for all k, ℓ, we have the
relation rk = rℓ = r, it holds that

[Yi]kℓ =
i∏

j=1
rj [Ai]ℓk. (3.104)
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This, in turn, implies
1
i

log[Yi]kℓ → E[log r] = −ρ(GA) (3.105)

since every column of Ai tends to its Perron vector v.
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4 Information Sharing

4.1 Introduction1

An implicit assumption common to our discussion so far is that agents are willing to
share with neighbors their full belief vector. That is, they share their beliefs about
all possible hypotheses. In the context of social networks, this can be an unrealistic
assumption.

For instance, oftentimes, Twitter users concentrate on particular topics that constitute
Twitter Trends. If candidate A gave a recent press release, Twitter users will likely focus
on A when exchanging opinions and ignore other candidates. Another example can
be users trying to determine the best mobile operator — see Fig. 4.1, which displays
the evolution of discussions on Twitter over time about two operators in Switzerland.
The communication trends in this case can change based on the campaigns and
advertisements by the mobile service providers. Furthermore, in the context of engi-
neering systems, transmitting partial beliefs rather than full beliefs enables the design
of communication-efficient systems under limited resources.

Motivated by these examples, in this chapter, we are interested in the case where social
agents share information on a random hypothesis of interest at each iteration.

4.1.1 Contributions.

• We propose a social learning algorithm, where agents share their beliefs on
only one randomly chosen hypothesis at each time instant — see Section 4.3.
Compared to the prior work [62], the hypothesis being exchanged between agents
is allowed to change over time. Moreover, under this partial information sharing
scheme, agents complete the missing components of the received beliefs by
using their own beliefs.

1The material in this chapter is based on [61].

61



Information Sharing

0 10 20 30 40 50 60
Indices of weeks

0

10

20

30

40

50

60

N
um

be
r o

f t
w

ee
ts

Mobile operator A
Mobile operator B

Figure 4.1: Number of tweets about two mobile operators for each week. (Mobile operator
A- Swisscom, B- SunRise). Total of 64 weeks between 01/01/2021 and 30/04/2022, tweets in
Switzerland.

• When a wrong hypothesis is exchanged with positive probability, we show that
beliefs evaluated at that hypothesis decay exponentially. Theorem 4.3 establishes
that the decay rate is the same as the asymptotic learning rate of traditional
geometric social learning algorithm in Algorithm 2.1. As a result, if each wrong
hypothesis is exchanged with positive probability, then learning occurs with
probability 1 (Corollary 4.1).

• We develop proof techniques to tackle the randomness in the combination policy
stemming from the shared hypothesis. The constraint that the beliefs belong to
the probability simplex couples the processes for different hypotheses, making
the standard application of the strong-law-of-large-numbers nonfeasible. Thus,
we utilize martingale arguments to handle the non-linearity.

• We provide a counter-example in Section 4.5 to show that sharing information
about the true hypothesis is not sufficient for truth learning with full confidence
when agents use their own beliefs as priors for other agents’ beliefs.

• On the other hand, Theorem 4.4 states that agents will never discard the truth
completely. Namely, their beliefs on the true hypothesis will never be zero, which
also means that they will never be fully confident on a wrong hypothesis being
the true hypothesis. This contrasts with the findings in [62], where truth sharing is
shown to lead to truth learning when agents adopt uniform priors for the missing
components. However, with such an approach, agents might also become fully
confident in an incorrect hypothesis.
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The randomness in the shared hypothesis and the incomplete information received
from the neighbors introduce new challenges into the analysis, in comparison to the
proof of full information sharing setting described in Theorem 2.1. This aspect is
treated in later sections.

4.2 Partial Information Sharing

The canonical social learning setting described in Chapter 2 assumes that agents share
their entire beliefs with each other at every iteration. The work [62] considers an
alternative setting where agents share their beliefs on only one hypothesis of interest,
denoted by τ ∈ Θ, which is fixed over time. In particular, after agents perform the local
adaptation step (2.7), each agent k receives ψℓ,i(τ) from its neighbors ℓ ∈ Nk. Then,
each agent k completes the missing entries of the received belief vectors by using the
construction:

ψ̂ℓ,i(θ) =


ψℓ,i(τ), θ = τ

1−ψℓ,i(τ)
H − 1 , θ ̸= τ

(4.1)

for ℓ ∈ Nk. Observe that the received component of the intermediate belief is used as is,
while the remaining components are assigned uniform weight. Then, these modified
beliefs are used in the combination step:

µk,i(θ) =

∏
ℓ∈Nk

(ψ̂ℓ,i(θ))aℓk

∑
θ′∈Θ

∏
ℓ∈Nk

(ψ̂ℓ,i(θ′))aℓk
. (4.2)

The work [62] provides a detailed analysis of this algorithm and proposes a self-aware
variant of it where each agent k uses ψk,i(θ) instead of the approximation ψ̂k,i(θ) in
(4.2). For the purposes of this chapter, it is enough to state the following results, which
we will refer to in the sequel. Let us introduce the following notation for the average
likelihood function. The average is over the non-transmitted components (denoted by
the symbol τ ):

Lk(ξ|τ) ≜ 1
H − 1

∑
θ∈Θ\{τ}

Lk(ξ|θ). (4.3)

Then, the following two results are from [62].
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Theorem 4.1 (Learning with truth sharing [62, Theorem 1]). If τ = θ◦, under
Assumption 2.2 and a modified global identifiability assumption, i.e., if there
exists an agent such that

DKL

(
Lk(·|τ)

∣∣∣∣∣∣Lk(·|τ)
)
> 0, (4.4)

then, truth learning occurs with full confidence:

µk,i(τ) a.s.−−→ 1 (4.5)

for each agent k under (4.1)–(4.2).

Theorem 4.1 shows that if the hypothesis τ that agents exchange information about
happens to be the truth θ◦, then this is sufficient for truth learning with full confidence.
However, if they are not discussing the truth, this can lead to mislearning a wrong
hypothesis as the next result illustrates.

Theorem 4.2 (Total mislearning [62, Theorem 3]). If τ ̸= θ◦, under Assump-
tion 2.2 and the condition that

K∑
k=1

vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|τ)
)
<

K∑
k=1

vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|τ)
)

(4.6)

all agents learn a wrong hypothesis with full confidence:

µk,i(τ) a.s.−−→ 1 (4.7)

for each agent k under (4.1)–(4.2).

In the algorithm we propose in this chapter (Algorithm 4.1), agents will fill the missing
beliefs using their own information, instead of assigning uniform values to them. This
practice will result in outcomes that are opposite to Theorems 4.1 and 4.2. Namely, we
show in the following that exclusive truth sharing does not suffice for truth learning
(Sec. 4.5), while total mislearning can never occur under Algorithm 4.1.

4.3 Social Learning under Trending Topics

As opposed to existing works that require transmission of the entire beliefs at each
iteration, or exchanging a fixed component of the beliefs, in this work we allow agents to
share a random component at each iteration. Similar to [62], each agent will continue
to compute its intermediate beliefψk,i(θ) for every possible θ ∈ Θ according to (2.7),
and the agents will continue to share with their neighbors information about their
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belief, albeit for only one of the hypotheses. However, the agents will now be sharing
information about the same trending hypothesis τi ∈ Θ, where, τi is randomly selected
and allowed to change over time.

The motivation for this setting is two-fold. First, people tend to concentrate on partic-
ular topics of discussion over social networks, as indicated earlier in the introduction.
Second, if agents (e.g., sensors, robots) have the same random key, they can randomly
select the same hypothesis at each iteration without needing a central controller, and
then exchange beliefs on that hypothesis alone, as opposed to the more costly ap-
proach of exchanging entire beliefs. Utilizing randomness this way can prove useful
compared to a periodic scheduling scheme for security reasons, since deciphering a
random key is harder for eavesdroppers than inferring a fixed schedule.

We denote the distribution of τi by π, where π is a probability vector over the set of
hypotheses Θ, and write P(τi = θ) = πθ. We assume that τi is i.i.d. over time and also
independent of all observations {ξk,j} over space and time.

Again, since the agents receive incomplete belief vectors from their neighbors (actually,
they receive only one entry from these vectors), the agents will need to complete the
missing entries. In the proposed strategy, the agents use their own intermediate local
beliefs to fill in for the missing beliefs from their neighbors by using the following
construction. Namely, agent k completes the belief vector received from its neighbor ℓ
by using

ϕ
(k)
ℓ,i (θ) =

{
ψℓ,i(θ), θ = τi

ψk,i(θ), θ ̸= τi
. (4.8)

By doing so, the entries ofϕ(k)
ℓ,i need not add up to 1. For this reason, agent k normalizes

(4.8) according to:

ψ̂
(k)
ℓ,i (θ) =

ϕ
(k)
ℓ,i (θ)∑

θ′∈Θϕ
(k)
ℓ,i (θ′)

(4.9)

whose denominator can be written as∑
θ′∈Θ

ϕ
(k)
ℓ,i (θ′) = 1−ψk,i(τi) +ψℓ,i(τi). (4.10)

We refer to (4.8)–(4.9) as a bootstrapping step. Subsequently, the agents combine the
approximate intermediate beliefs from (4.9) to update their beliefs as in (4.2):

µk,i(θ) =

∏
ℓ∈Nk

(ψ̂(k)
ℓ,i (θ))aℓk

∑
θ′∈Θ

∏
ℓ∈Nk

(ψ̂(k)
ℓ,i (θ′))aℓk

. (4.11)
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The procedure is summarized in Algorithm 4.1. Observe that the algorithm is self-
aware because for each agent k, it follows from (4.13) that ψ̂(k)

k,i (θ) = ψk,i(θ). In other
words, agents use their own intermediate beliefs as is.

Algorithm 4.1 Social learning with trending hypothesis

1: set initial priors µk,0(θ) > 0, ∀θ ∈ Θ and ∀k ∈ N
2: while i ≥ 1 do
3: for each agent k = 1, 2, . . . ,K do
4: receive private observation ξk,i
5: adapt locally to obtain intermediate belief:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (4.12)

6: end for
7: agents exchange {ψk,i(τi)} on the current hypothesis of interest τi ∼ π
8: for each agent k = 1, 2, . . . ,K do
9: approximate the intermediate beliefs for ℓ ∈ Nk by bootstrapping:

ψ̂
(k)
ℓ,i (θ) =


ψℓ,i(θ)

1−ψk,i(τi) +ψℓ,i(τi)
, θ = τi

ψk,i(θ)
1−ψk,i(τi) +ψℓ,i(τi)

, θ ̸= τi

(4.13)

10: combine approximate beliefs:

µk,i(θ) ∝
∏
ℓ∈Nk

(ψ̂(k)
ℓ,i (θ))aℓk (4.14)

11: end for
12: i← i+ 1
13: end while

Recall that in geometric non-Bayesian social learning Algorithm 2.1, the entire belief
vectors are exchanged and hence there is no approximation of the intermediate beliefs,
that is,

ψ̂
(k)
ℓ,i (θ) = ψℓ,i(θ). (4.15)

In addition, in the fixed hypothesis sharing case (4.1), there is a fixed transmitted
hypothesis τi = τ and non-transmitted hypotheses are assumed to be uniformly likely.
In contrast, in (4.13) agents exploit their own beliefs as prior information, and the
random hypothesis τi changes over time.
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4.4 Truth Learning

4.4 Truth Learning

In this section, we present results that characterize truth learning under certain condi-
tions. First, we define the following loss function in order to assess the disagreement
between the truth and the belief of each agent k at time i:

Q(µk,i) ≜ DKL(eθ◦ ||µk,i), (4.16)

where we denote the true probability mass function by the basis vector with unit entry
at location θ◦:

eθ◦(θ) =
{

1, θ = θ◦

0, θ ̸= θ◦ . (4.17)

Observe that

Q(µk,i) =
∑
θ∈Θ

eθ◦(θ) log eθ◦(θ)
µk,i(θ)

= − logµk,i(θ◦), (4.18)

where we use the convention that 0 log 0 = 0. The network loss is defined as the
weighted average of the individual loss functions, where the weighting is given by the
Perron entries:

Q(µi) ≜
K∑
k=1

vkQ(µk,i) = −
K∑
k=1

vk logµk,i(θ◦). (4.19)

We denote the history of observations and transmitted hypotheses up to time i by
F i ≜ {τi, ξi, τi−1, ξi−1, . . . }, where we introduced the aggregate vector of observations
ξi ≜ {ξk,i}Kk=1. The following result shows that the conditional expectation of the
network loss does not increase, given the history F i−1.

Lemma 4.1 (Network average loss). The network lossQ(µi) is a super-martingale,
namely,

E
[
Q(µi)

∣∣∣F i−1

]
≤ Q(µi−1) (4.20)

Proof. See Appendix 4.A. ■

In view of this lemma, Algorithm 4.1 leads to a robust design in the sense that the loss
does not increase in expectation. Note that this result holds for any possible transmis-
sion distribution π. Similar to Eq. (2.27) in Theorem 2.1 for geometric social learning,
we can also consider the decay rate of the belief ratio for some wrong hypothesis
θ ∈ Θ \ {θ◦} under the proposed strategy (4.12)–(4.14).
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Theorem 4.3 (Asymptotic learning rate). For each wrong hypothesis θ ∈ Θ\{θ◦},
if the transmission probability is strictly positive, i.e., πθ > 0, then the belief on
that wrong hypothesis will converge to 0 at an asymptotically exponential rate
under Assumption 2.2. Namely, for each agent k:

1
i

log µk,i(θ
◦)

µk,i(θ)
a.s.−−→

K∑
k=1

vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|θ)). (4.21)

Proof. See Appendix 4.B. ■

The convergence rate expression in (4.21) is an average of the local KL divergences of
agents, which measures their individual informativeness, weighted by their network
centralities (i.e., Perron entries). Observe that this rate matches the rate (2.27) for
canonical geometric social learning algorithms, which require transmission of full
beliefs. Therefore, a positive probability of transmitting the wrong hypothesis suffices
for achieving the same asymptotic performance with probability 1, regardless of the
transmission probabilities for the remaining hypotheses. Combining Theorem 4.3 and
Assumption 2.1 yields the following sufficient conditions for truth learning.

Corollary 4.1 (Truth learning). Under Assumptions 2.1 and 2.2, if πθ > 0 for all
wrong hypotheses θ ∈ Θ\{θ◦}, then each agent k learns the truth with probability
1, i.e.,

µk,i(θ◦) a.s.−−→ 1. (4.22)

Notice that any asymmetry between the entries of π does not affect the learning. In
particular, more or less frequent communication of a hypothesis does not change the
asymptotic rate of convergence. In [62], truth learning (in the sense of Definition 2.1)
occurs if, and only if, the fixed transmitted hypothesis is the true hypothesis. Corollary
4.1 shows that if agents are bootstrapping as opposed to using uniform weights [62],
then learning can occur as long as πθ > 0 for all wrong hypotheses θ. This implies that
they can learn the truth even if they do not discuss the true hypothesis, i.e. even if
πθ◦ = 0.

4.5 Truth Sharing

In the previous section, we drew the following two conclusions: In Theorem 4.3,
we established that if there is a positive probability πθ > 0 of transmitting a wrong
hypothesis θ ̸= θ◦, this is sufficient to reject θ, i.e., beliefs on that hypothesis will go to
0 exponentially fast. Building upon this, in Corollary 4.1 we showed that exchanging
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all wrong hypotheses with positive probability (i.e., πθ > 0, ∀θ ̸= θ◦) is sufficient for
agents to infer the truth.

Given these findings, the question arises: Is the exclusive exchange (πθ◦ = 1) of the true
hypothesis alone enough for learning? We give a negative answer to this question by
providing a toy counter-example where agents do not learn even when πθ◦ = 1.

Consider a fully-connected network of 3 agents (see Fig. 4.2). The hypotheses set is Θ =
{1, 2, 3, 4}where incidentally θ◦ = 4. Assume that agent k cannot distinguish between
the true hypothesis θ◦ = 4 and the hypothesis θk = k, i.e., DKL(Lk(·|θ◦)||Lk(·|θk)) = 0.
Assume further that each agent k is capable of distinguishing hypotheses other than θk
and θ◦ (e.g., agent 1 can distinguish hypotheses 2 and 3, but cannot distinguish 1 and
4). Since each wrong hypothesis θ ̸= θ◦ can be distinguished by at least one agent, the
problem is globally identifiable, satisfying Assumption 2.1.

1
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µ1,i(1) = 1 � ↵
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µ3,i(4) = ↵

<latexit sha1_base64="ILWC+FMLvUyD5H0bBDhJFgNdPKU=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKkhJSlE3QkEXLivYBzQhTKaTdujMJMxMhBK78FfcuFDErb/hzr9x2mah1QMXDufcy733hAmjSjvOl1VYWl5ZXSuulzY2t7Z37N29topTiUkLxyyW3RApwqggLU01I91EEsRDRjrh6Grqd+6JVDQWd3qcEJ+jgaARxUgbKbAPPJ4GWe2UTmClfgIvoYdYMkSBXXaqzgzwL3FzUgY5moH96fVjnHIiNGZIqZ7rJNrPkNQUMzIpeakiCcIjNCA9QwXiRPnZ7P4JPDZKH0axNCU0nKk/JzLElRrz0HRypIdq0ZuK/3m9VEcXfkZFkmoi8HxRlDKoYzgNA/apJFizsSEIS2puhXiIJMLaRFYyIbiLL/8l7VrVPavWb+vlxnUeRxEcgiNQAS44Bw1wA5qgBTB4AE/gBbxaj9az9Wa9z1sLVj6zD37B+vgGanSUcg==</latexit>

µ2,i(4) = ↵

Figure 4.2: A network of 3 agents. Each agent k can distinguish all but the hypotheses θ◦ = 4
and θk = k. In the assumed scenario, belief values on θ◦ = 4 are assumed to be α ∈ (0, 1) for all
agents. Belief values at locally distinguishable hypotheses are assumed to be 0.

Imagine that at time i, µk,i(θ◦) = α and µk,i(θk) = 1 − α for each agent k. In other
words, for each agent k, the beliefs on hypotheses that are locally distinguishable are
equal to 0 2. Using (2.7) yields the intermediate beliefs:

ψk,i+1(θ◦) = Lk(ξk,i+1|θ◦)µk,i(θ◦)
Lk(ξk,i+1|θ◦)µk,i(θ◦) + Lk(ξk,i+1|θk)µk,i(θk)

. (4.23)

Since Lk(ξk,i+1|θ◦) = Lk(ξk,i+1|θk) (their KL divergence is assumed to be 0):

ψk,i+1(θ◦) = µk,i(θ◦)
µk,i(θk) + µk,i(θ◦) = µk,i(θ◦) = α (4.24)

Similarly,

ψk,i+1(θk) = µk,i(θk) = 1− α. (4.25)

2Under Assumption 2.2 and finite KL divergence condition, the belief values remain nonzero for all
finite time instants. For ease of presentation, we assume that sufficient time has elapsed so that the
beliefs on locally distinguishable hypotheses are sufficiently close to 0.
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Information Sharing

Agents fill the received intermediate beliefs by using their own beliefs (i.e, they boot-
strap) according to (4.13). Here, since πθ◦ = 1 (i.e., τi+1 = θ◦) we get

ψ̂
(k)
ℓ,i+1(θ◦) = ψℓ,i+1(θ◦) = α, (4.26)

and

ψ̂
(k)
ℓ,i+1(θk) = ψk,i+1(θk) = 1− α. (4.27)

Finally, after the combination of the approximate intermediate beliefs using (4.14), we
arrive at

µk,i+1(θ◦) = µk,i(θ◦) = α, (4.28)

and

µk,i+1(θk) = µk,i(θk) = 1− α. (4.29)

This is an equilibrium (fixed point) for the algorithm. Regardless of the observations,
the beliefs of agents will not change over time. Consequently, if α is small, agents can
get stuck in beliefs where their confidence levels on the wrong hypotheses are higher
than their confidence on the true hypothesis.

The results in Sec. 4.4 and the counter-example in this section reveal that it is the
exchange of the wrong hypotheses that promotes truth learning, and not truth sharing.
The intuition behind this rather surprising outcome is the following. In the current
strategy, agents fill the missing belief components with their own beliefs (using boot-
strapping). If their beliefs happen to align closely on the true hypothesis, it is difficult
to change them. This undesirable equilibrium is bypassed when agents exchange
beliefs on wrong hypotheses. This is due to Assumption 2.1, which states that there
exists at least one agent that is able to drive the beliefs on a wrong hypothesis to 0.

In [62] (see Eq. (4.1)), when the fixed transmitted hypothesis corresponds to the
truth, truth learning in the sense of Definition 2.1 occurs almost surely. The example
described in this section suggests that using one’s own belief for estimating non-
transmitted components of neighbors, i.e., bootstrapping, as opposed to using uniform
priors, may lead regular agents to become conservative about their own opinions. It
can prevent learning under partial information sharing. In addition to not learning
the truth, the network can also fail to reach consensus and opinion clusters might
emerge. In Fig. 4.2, agents having positive beliefs for different hypotheses can have
a major effect especially when α is small. It leads to a strong network disagreement.
Network disagreement phenomena were observed in the works [63–66] when there
are special agents who never change their opinions, i.e., stubborn agents. Our result,
on the other hand, indicates that even when the network is only composed of regular
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agents, limited communication can hinder concurrence and truth learning.

4.6 Impossibility of Mislearning

The previous section demonstrated that bootstrapping might induce network disagree-
ment and poor equilibrium when the belief about the true state is shared. In this
section, we provide a positive result in the opposite direction: Agents will never be fully
confident on a wrong hypothesis. Total mislearning cannot occur.

Theorem 4.4 (Impossibility of mislearning). Under Assumption 2.2, agents will
always have positive confidence on the true hypothesis. Namely, for each agent k,
µk,i(θ◦) > 0 for any finite time i, and

P
(

lim inf
i→∞

µk,i(θ◦) = 0
)

= 0, (4.30)

or alternatively, for θ ∈ Θ \ {θ◦}

P
(

lim sup
i→∞

µk,i(θ) = 1
)

= 0. (4.31)

Proof. See Appendix 4.C. ■

Notice that there is no assumption on the transmission probabilities in Theorem 4.4.
With bootstrapping, agents never learn a wrong hypothesis. In [62], it was shown that
agents might mislearn a wrong hypothesis if the fixed transmitted hypothesis is not
the true hypothesis — recall Theorem 4.2. As a matter of fact, bootstrapping leads to a
more robust design in the face of partial communication.

4.7 Numerical Simulations

Consider a 10−agent strongly-connected network (see the topology in Fig. 4.3i). The
combination matrix is designed using the Metropolis rule [7], yielding a doubly-
stochastic matrix. Agents are trying to detect the true state θ◦ among a set of five
hypotheses, namely Θ ≜ {1, 2, 3, 4, 5}. We assume that θ◦ = 1. To accomplish this
task, agents use the protocol described in (4.12)-(4.14), where the random shared
hypothesis τi is distributed according to the following probability mass function:

P(τi = θ) = πθ =

0, if θ = θ◦

0.25, otherwise.
(4.32)
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Figure 4.3: (i) Network topology. (ii) Evolution of the shared hypothesis τi over time in the
upper panel, and belief evolution for agent 1 showing truth learning in the bottom panel.
(iii) Experimental rates of convergence for agent 1 for different hypotheses (in colored lines),
compared with the theoretical asymptotic rate of convergence, i.e., dave defined in (4.35) (in
black dotted lines).

The observations at the agents are generated by a family of unit-variance Gaussian
densities:

fn(ξ) = 1√
2π

exp
{
− (ξ − 0.3n)2

2

}
(4.33)

for n = 1, 2, 3, 4, 5. The likelihoods of agents are chosen from among these Gaussian
densities according to the identifiability setup in Table 4.1. For example, note that
agents 8–10 cannot distinguish hypotheses 1 and 5. Observe that the global identifia-
bility condition in Assumption 2.1 is satisfied.

72



4.7 Numerical Simulations

Agent k
Likelihood Function: Lk(ξ|θ)

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
1− 2 f1 f1 f3 f4 f5

3− 5 f1 f2 f1 f4 f5

6− 7 f1 f2 f3 f1 f5

8− 10 f1 f2 f3 f4 f1

Table 4.1: Identifiability Setup for Network in Fig. 4.3

In Fig. 4.3ii, we see the evolution of the belief for agent 1, which shows that, although
the agents never share information about the true hypothesis, i.e., πθ◦ = 0, the agent
asymptotically learns the truth, as suggested by Corollary 4.1. A similar behavior
happens for the remaining agents. Fig. 4.3iii shows that the experimental convergence
rates for agent 1, i.e.,

log µ1,i(θ)
µ1,i(θ◦) (4.34)

which are shown in colored lines, approach the asymptotic convergence rates of
traditional social learning (black dotted lines):

dave(θ) ≜
K∑
k=1
−vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|θ)) (4.35)

as predicted by Theorem 4.3. This means that regarding the asymptotic convergence
rate, there is no performance loss when only one hypothesis is exchanged at each
iteration as long as all wrong hypotheses have positive probability of being transmitted.

In the next simulation, we illustrate that truth sharing is not sufficient for truth learning.
For that purpose, we fix the transmitted hypothesis at the true hypothesis τi = θ◦ = 1
for all i = 1, 2, . . . . The result can be seen in Fig. 4.4, where we show the evolution of
the belief of agent 1 over time. Despite sharing the true hypothesis, the conservative
behavior described in Section 4.5 hinders the ability of the agent to learn the truth. We
note that agent 1 cannot decidedly distinguish between hypothesis 1 and 2, which are
indistinguishable from its local point of view (see Table 4.1). This was suggested by the
example in Section 4.5, where agents are caught in an equilibrium where they have
non-zero belief values for locally indistinguishable hypotheses. Notice that although
truth learning is not observed, there is no total mislearning phenomena as well. As
suggested by Theorem 4.4, the confidence in the truth is not going to 0.
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Figure 4.4: Belief evolution of agent 1 when the shared hypothesis is fixed over time to be the
true state of nature. This demonstrates that while there is no truth learning with full confidence,
there is no complete rejection of the true hypothesis as well.

4.8 Concluding Remarks

In this chapter, we studied social learning under partial information sharing where
the transmitted hypothesis is changing at random at every iteration. In Sec. 4.3, we
proposed an algorithm for this setting in which agents fill the latent belief components
with their own beliefs. In Sec. 4.4, we derived the rate of convergence under the
proposed algorithm and provided sufficient conditions for truth learning. Then, in
Secs. 4.5 and 4.6, we demonstrated that by exchanging beliefs exclusively on the true
hypotheses, agents will neither learn the truth with full confidence nor mislearn, i.e.,
learn a false hypothesis with full confidence. Instead they will be unsure about the
truth among their indistinguishable hypotheses.

There are many possible extensions to the setting considered in this work. For instance,
each agent k can choose a possibly different hypothesis τk,i to transmit at each iteration.
Alternatively, the transmitted hypothesis τi can evolve according to some Markovian
model, instead of independently over time. These extensions introduce additional
complexities to the technical analysis, especially when managing the random matrix
products. Another interesting extension would be to see if the current work on finite
hypothesis sets can extend to continuous hypothesis sets, such as compact sets as in
[67] or non-compact sets as in the distributed estimation literature (see e.g., [9, 68, 69]).
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4.A Proof of Lemma 4.1

From the combination step (4.14),

logµk,i(θ◦) =
∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)− log

∑
θ′∈Θ

exp
{ ∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ′)

}
(a)
≥

∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)− log

( ∑
θ′∈Θ

∑
ℓ∈Nk

aℓkψ̂
(k)
ℓ,i (θ′)

)
=
∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)− log

( ∑
ℓ∈Nk

aℓk
∑
θ′∈Θ

ψ̂
(k)
ℓ,i (θ′)

)
(b)=

∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦) (4.36)

where (a) follows from Jensen’s inequality, and (b) follows from the fact that ψ̂(k)
ℓ,i is a

pmf and A is left-stochastic. Therefore, the conditional expectations satisfy

E
[

logµk,i(θ◦)
∣∣∣∣F i−1

]
≥ E

[ ∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)

∣∣∣∣F i−1

]
(a)= Eξi,τi

[ ∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)

]
(b)= Eξi

Eτi|ξi

[ ∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)

]
(c)= Eξi

Eτi

[ ∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)

]
(4.37)

where (a) follows from the fact that arguments inside the expectation are functions of
{ξi, τi,F i−1}, (b) follows from the tower rule of expectation, and (c) follows from the
fact that ξi and τi are independent. The inner expectation can be written as

Eτi

[ ∑
ℓ∈Nk

aℓk log ψ̂(k)
ℓ,i (θ◦)

]

= πθ◦
∑
ℓ∈Nk

aℓk log ψℓ,i(θ◦)
1−ψk,i(θ◦) +ψℓ,i(θ◦) +

∑
τ ̸=θ◦

πτ
∑
ℓ∈Nk

aℓk log ψk,i(θ◦)
1−ψk,i(τ) +ψℓ,i(τ)

= πθ◦
∑
ℓ∈Nk

aℓk logψℓ,i(θ◦) +
∑
τ ̸=θ◦

πτ logψk,i(θ◦)−
∑
τ∈Θ

πτ
∑
ℓ∈Nk

aℓk log
(
1−ψk,i(τ) +ψℓ,i(τ)

)
(4.38)

Using the Perron vector defined by (2.2), taking the expectation of (4.36) with respect
to τi, and using (4.38) we get

Eτi

[ K∑
k=1

vk logµk,i(θ◦)
]
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≥ πθ◦

K∑
k=1

vk logψk,i(θ◦) +
∑
τ ̸=θ◦

πτ

K∑
k=1

vk logψk,i(θ◦)

−
∑
τ∈Θ

πτ

K∑
k=1

vk
∑
ℓ∈Nk

aℓk log
(

1−ψk,i(τ) +ψℓ,i(τ)
)

=
K∑
k=1

vk logψk,i(θ◦)−
∑
τ∈Θ

πτ

K∑
k=1

vk
∑
ℓ∈Nk

aℓk log
(

1−ψk,i(τ) +ψℓ,i(τ)
)

(a)
≥

K∑
k=1

vk logψk,i(θ◦)− log

∑
τ∈Θ

πτ

K∑
k=1

vk
∑
ℓ∈Nk

aℓk
(
1−ψk,i(τ) +ψℓ,i(τ)

)
=

K∑
k=1

vk logψk,i(θ◦)− log

∑
τ∈Θ

πτ

K∑
k=1

vk
(
1−ψk,i(τ) +ψk,i(τ)

)
=

K∑
k=1

vk logψk,i(θ◦)− log(1)

=
K∑
k=1

vk logψk,i(θ◦), (4.39)

where (a) follows from Jensen’s inequality. Applying the expectation with respect to ξi
to both sides of (4.39), we arrive at

Eξi
Eτi

[ K∑
k=1

vk logµk,i(θ◦)
]

(4.39)
≥ Eξi

[ K∑
k=1

vk logψk,i(θ◦)
]

(a)= Eξi

[ K∑
k=1

vk log Lk(ξk,i|θ◦)∑
θ′∈Θ Lk(ξk,i|θ′)µk,i−1(θ′)

]
+

K∑
k=1

vk logµk,i−1(θ◦)

=
K∑
k=1

vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣∣∣∑
θ′∈Θ

Lk(·|θ′)µk,i−1(θ′)
)

+
K∑
k=1

vk logµk,i−1(θ◦)

(b)
≥

K∑
k=1

vk logµk,i−1(θ◦) (4.40)

where (a) follows from the fact that belief vectors at time i − 1 are independent of
the new observations at time i, and (b) follows from the fact that KL-divergences
are non-negative. It is worth noting that this proof holds even in cases where the
transmission distribution π is time-dependent, or when it depends on the observations.
Therefore, the result is more general than what is explicitly stated. However, to maintain
consistency with the other parts of the paper, we used the fixed distribution notation π.
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4.B Proof of Theorem 4.3

The log-belief ratio can be written as

log µk,i(θ)
µk,i(θ◦) =

∑
ℓ∈Nk

aℓk log
ψ̂

(k)
ℓ,i (θ)

ψ̂
(k)
ℓ,i (θ◦)

= I{τi = θ}
∑
ℓ∈Nk

aℓk log ψℓ,i(θ)
ψk,i(θ◦) + I{τi = θ◦}

∑
ℓ∈Nk

aℓk log ψk,i(θ)
ψℓ,i(θ◦)

+
(
1− I{τi = θ} − I{τi = θ◦}

)
log ψk,i(θ)

ψk,i(θ◦) . (4.41)

Observe from (4.41) that the log-belief ratio is a random variable given the intermediate
beliefs, because of the randomness of the trending topic τi. Next, we fix a wrong
hypothesis θ ̸= θ◦ and define the effective combination matrix at time i as

Ãi ≜

{
A, θ = τi

I, θ ̸= τi
. (4.42)

This is a binary random variable taking the value of the original combination matrix A
if the hypothesis is exchanged at iteration i, and the identity matrix I otherwise. More
compactly,

Ãi = I{τi = θ}A+ (1− I{τi = θ})I. (4.43)

Using this definition, the relation in (4.41) can be rewritten for θ ̸= θ◦ as:

log µk,i(θ)
µk,i(θ◦) =

∑
ℓ∈Nk

[Ãi]ℓk log ψℓ,i(θ)
ψℓ,i(θ◦) + (I{τi = θ◦} − I{τi = θ})

∑
ℓ∈Nk

aℓk log ψk,i(θ
◦)

ψℓ,i(θ◦)

(4.12)=
∑
ℓ∈Nk

[Ãi]ℓk log Lℓ(ξℓ,i|θ)
Lℓ(ξℓ,i|θ◦) +

∑
ℓ∈Nk

[Ãi]ℓk log µℓ,i−1(θ)
µℓ,i−1(θ◦)

+
(
I{τi = θ◦} − I{τi = θ}

) ∑
ℓ∈Nk

aℓk log ψk,i(θ
◦)

ψℓ,i(θ◦) . (4.44)

The first two terms on the RHS of (4.44) are analogous to the terms that arise in the
standard log-linear social learning analysis (see Eq. (2.28)), albeit with the random
matrix Ãi in place of the original combination matrix A. The last term in (4.44) is a
residue term due to the network disagreement. In order to expand the recursion over
time, we introduce the following notation for the product of the effective combination
matrices for j ≤ i:3

Ãj�i ≜ ÃjÃj+1 . . . Ãi−1Ãi, (4.45)

3If j > i, we set Ãj�i = I.
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and also for the residue terms for j ≤ i as

Rk
j ≜

(
I{τj = θ◦} − I{τj = θ}

)
×

K∑
ℓ=1

[Ãj+1�i]ℓk
K∑
m=1

amℓ log ψℓ,j(θ
◦)

ψm,j(θ◦) . (4.46)

In other words,Rk
j denotes the residual term at time i caused by the network disagree-

ment at time j. Expanding (4.44) with these definitions and dividing both sides by i,
we arrive at the following expression for the convergence rate.

1
i

log µk,i(θ)
µk,i(θ◦) = 1

i

i∑
j=1

K∑
ℓ=1

[Ãj�i]ℓk log Lℓ(ξℓ,j |θ)
Lℓ(ξℓ,j |θ◦) + 1

i

K∑
ℓ=1

[Ã1�i]ℓk log µℓ,0(θ)
µℓ,0(θ◦) + 1

i

i∑
j=1
Rk
j .

(4.47)

In Lemma 4.3 further ahead, we show that the summation of the residue terms in (4.47)
stays finite with probability 1 as i grows, so that

1
i

i∑
j=1
Rk
j

a.s.−−→ 0. (4.48)

Therefore, the residue terms do not affect the convergence rate in (4.47) as i→∞. We
proceed to study the remaining terms in (4.47). Observe that the finiteness of the KL
divergence of likelihood functions can be expressed as∣∣∣∣E[ log Lk(ξk,i|θ)

Lk(ξk,i|θ◦)

]∣∣∣∣ <∞ (4.49)

which in turn implies ∣∣∣∣ log Lk(ξk,i|θ)
Lk(ξk,i|θ◦)

∣∣∣∣ a.s.
< ∞. (4.50)

The set of events such that

lim
n→∞

[Ãj�j+n − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦) ̸= 0 (4.51)

is a subset of the union of the event sets:

lim
n→∞

[Ãj�j+n − v1⊤
K ]ℓk ̸= 0 (4.52)

and ∣∣∣∣ log Lℓ(ξℓ,j |θ)
Lℓ(ξℓ,j |θ◦)

∣∣∣∣ =∞. (4.53)
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But we know that these two sets are null sets because of the auxiliary Lemma 4.4 and
(4.50), respectively. Therefore, for any time instant j, it holds that

lim
n→∞

[Ãj�j+n − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦)
a.s.= 0. (4.54)

This implies for the convergence of the Cesàro mean [70] that

lim
t→∞

1
t

t−1∑
n=0

[Ãj�j+n − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦)
a.s.= 0. (4.55)

By using j = i− n, this can alternatively be written as

lim
t→∞

1
t

t−1∑
n=0

[Ãi−n�i − v1⊤
K ]ℓk log Lℓ(ξℓ,i−n|θ)

Lℓ(ξℓ,i−n|θ◦)
a.s.= 0. (4.56)

Since this holds for any time instant i ≥ t (which ensures j ≥ 1), we can set i = t. By
changing the summation index n to j, we arrive at

lim
i→∞

1
i

i∑
j=1

[Ãj�i − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦)
a.s.= 0. (4.57)

As a result, the first term in (4.47) can be written as:

1
i

i∑
j=1

K∑
ℓ=1

[Ãj�i]ℓk log Lℓ(ξℓ,j |θ)
Lℓ(ξℓ,j |θ◦)

= 1
i

i∑
j=1

K∑
ℓ=1

[Ãj�i − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦) + 1
i

i∑
j=1

K∑
ℓ=1

[v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦)

= 1
i

i∑
j=1

K∑
ℓ=1

[Ãj�i − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦) + 1
i

i∑
j=1

K∑
k=1

vk log Lk(ξk,j |θ)
Lk(ξk,j |θ◦)

= 1
i

i∑
j=1

K∑
ℓ=1

[Ãj�i − v1⊤
K ]ℓk log Lℓ(ξℓ,j |θ)

Lℓ(ξℓ,j |θ◦) +
K∑
k=1

vk
1
i

i∑
j=1

log Lk(ξk,j |θ)
Lk(ξk,j |θ◦)

a.s.−−→
K∑
k=1
−vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣∣∣Lk(·|θ)) (4.58)

where the last step follows from (4.57) and the strong law of large numbers [40, Chapter
7]. Also, since by Lemma 4.4 Ã1�i a.s.−−→ v1⊤

K and by Assumption 2.2 the initial beliefs are
nonzero, it follows that

1
i

K∑
ℓ=1

[Ã1�i]ℓk log µℓ,0(θ)
µℓ,0(θ◦)

a.s.−−→ 0. (4.59)

79



Information Sharing

The asymptotic convergence rate then becomes

1
i

log µk,i(θ)
µk,i(θ◦)

a.s.−−→
K∑
k=1
−vkDKL

(
Lk(·|θ◦)

∣∣∣∣∣∣Lk(·|θ)). (4.60)

■

4.C Proof of Theorem 4.4

Since Q(µi) is a super-martingale (Lemma 4.1) and also non-negative (i.e., uniformly
bounded from below), by Doob’s forward martingale convergence theorem [40, Chap-
ter 11.5], there exists a finite random variableQ∞ such that, as i→∞,

Q(µi)
a.s.−−→Q∞. (4.61)

SinceQ∞ is finite, it holds that:

lim
i→∞

K∑
k=1

vk logµk,i(θ◦) > −∞

=⇒ lim inf
i→∞

logµk,i(θ◦) > −∞, ∀k ∈ N

=⇒ lim inf
i→∞

µk,i(θ◦) > 0 (4.62)

with probability 1.

4.D Auxiliary Results

4.D.1 Vanishing Matrix Norm

Lemma 4.2. If the wrong hypothesis θ is transmitted with positive probability,
i.e., πθ > 0, then, for any induced matrix norm,

E
[ ∥∥∥(Ãj+1�i)⊤(I −A⊤)

∥∥∥ ] = O(λ̃i−j) (4.63)

for a constant λ̃ that satisfies 0 ≤ λ̃ < 1.

Proof. Define the time difference n ≜ i − j. Since the matrices Ãi are i.i.d. binary
random variables over time, as defined by (4.42), for time differences 0 ≤ m ≤ n, we
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get

P
(
Ãj+1�i = Am

)
=
(
n

m

)
(πθ)m(1− πθ)n−m. (4.64)

Moreover, since A is a primitive stochastic matrix, for consecutive time instants, there
exists a non-negative constant λ < 1 such that [39, Eq. (8.2.10)]:

∥Am −Am+1∥ ≤ Cλm(1− λ) (4.65)

where C is a constant independent of m. Then, it follows that

E
[
∥(Ãj+1�i)⊤(I −A⊤)∥

]
=

n∑
m=0

P(Ãj+1�i = Am)∥Am −Am+1∥

(4.65)
≤

n∑
m=0

P(Ãj+1�i = Am)Cλm(1− λ)

(4.64)= C(1− λ)
n∑

m=0

(
n

m

)
(πθ)m(1− πθ)n−mλm

= C(1− λ)
(
λπθ + (1− πθ)

)n
= C(1− λ)

(
1− (1− λ)πθ

)n
= O(λ̃n) (4.66)

where λ̃ ≜ 1− (1− λ)πθ, which is a constant strictly smaller than 1 as long as πθ > 0. ■

4.D.2 Finiteness of the Residual Sum

Lemma 4.3. As i→∞, if πθ > 0, then, under Assumption 2.2

1
i

i∑
j=1
Rk
j

a.s.−−→ 0. (4.67)

Proof. First, we aggregate the residue terms and log-intermediate beliefs from across
the network into the following vectors:

Rj ≜ col
{
Rk
j

}K
k=1

, Ψi ≜ col
{

logψk,i(θ◦)
}K
k=1

. (4.68)

By using these definitions, expression (4.46) can be transformed into the following
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vector equation form:

Rj =
(
I{τj = θ◦} − I{τj = θ}

)
(Ãj+1�i)⊤(Ψj −A⊤Ψj). (4.69)

To bound the terms in this expression, we start by using Lemma 4.2 and Markov’s
inequality to obtain:

P
(
∥(Ãj+1�j+n)⊤(I −A⊤)∥ ≥ ϵ

)
≤ C(1− λ)λ̃n

ϵ
, (4.70)

where recall that n = i− j. Since λ̃ < 1, it holds that

∞∑
n=0

C(1− λ)λ̃n

ϵ
<∞. (4.71)

Then, the first Borel-Cantelli Lemma [40, Chapter 2.7] implies

lim
n→∞

∥∥∥∥(Ãj+1�j+n)⊤(I −A⊤)
∥∥∥∥ a.s.= 0, (4.72)

for any value of j. Moreover, if we bound the norm of (4.69), it holds almost surely that

∥Rj∥ =
∥∥∥∥(I{τj = θ◦} − I{τj = θ}

)
(Ãj+1�i)⊤(Ψj −A⊤Ψj)

∥∥∥∥
(a)
≤
∥∥∥∥I{τj = θ◦} − I{τj = θ}

∥∥∥∥× ∥∥∥∥(Ãj+1�i)⊤(I −A⊤)
∥∥∥∥× ∥∥∥∥Ψj

∥∥∥∥
≤
∥∥∥∥(Ãj+1�i)⊤(I −A⊤)

∥∥∥∥× ∥∥∥∥Ψj

∥∥∥∥
(b)
≤
∥∥∥∥(Ãj+1�i)⊤(I −A⊤)

∥∥∥∥Ψ, (4.73)

where (a) follows from the submultiplicative property of the norm, and (b) follows
from the definition

Ψ ≜ sup
j≥1
∥Ψj∥, (4.74)

which is shown to be finite under Assumption 2.2 in Appendix 4.D.4. Subsequently, the
norm of the Cesàro mean satisfies∥∥∥∥1

i

i∑
j=1
Rj

∥∥∥∥ ≤ 1
i

i∑
j=1

∥∥∥∥Rj

∥∥∥∥ (4.73)
≤ Ψ1

i

i∑
j=1

∥∥∥∥(Ãj+1�i)⊤(I −A⊤)
∥∥∥∥. (4.75)

Observe that (4.72) can alternatively be written as (by using the definition n = i− j)

lim
n→∞

∥∥∥∥(Ãi−n+1�i)⊤(I −A⊤)
∥∥∥∥ a.s.= 0. (4.76)
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As a result, the Cesàro mean satisfies

lim
t→∞

1
t

t−1∑
n=0

∥∥∥∥(Ãi−n+1�i)⊤(I −A⊤)
∥∥∥∥ a.s.= 0, (4.77)

for any i ≥ t (so that j = i− n ≥ 1). If we set i = t, and change the indices from n to
j = i− n, we get

lim
i→∞

1
i

i∑
j=1

∥∥∥∥(Ãj+1�i)⊤(I −A⊤)
∥∥∥∥ a.s.= 0. (4.78)

Incorporating this into (4.75), we conclude that, as i→∞,

∥∥∥∥1
i

i∑
j=1
Rj

∥∥∥∥ a.s.−−→ 0, =⇒ 1
i

i∑
j=1
Rk
j

a.s.−−→ 0. (4.79)

■

4.D.3 Convergence of the Matrix Product

Lemma 4.4. For a fixed time instant j, if πθ > 0, then

Ãj�i a.s.−−→ v1⊤
K (4.80)

as i→∞.

Proof. Recall from (4.42) that Ãi is a binary random variable and letEi denote the event
that Ãi = A. Since {Ei}∞i=1 are independent events across time and their probability of
occurrence satisfies πθ > 0, it holds that

∞∑
i=1

P(Ei) =
∞∑
i=1

πθ =∞. (4.81)

Subsequently, by the second Borel-Cantelli Lemma [40, Chapter 4.3], we conclude that

P(Ei occurs for infinitely many i) = 1. (4.82)

Notice that in the product of random matrices

Ãj�i = ÃjÃj+1 . . . Ãi−1Ãi, (4.83)

the realization of random matrices will either be equal to A or the identity matrix I.
Multiplication with identity matrices has no effect on the product and by (4.82), there
will be infinitely many A’s in the product with probability 1, as n = i− j →∞. Thus, if
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we define A∞ ≜ limi→∞Ai,

P( lim
n→∞

Ãj�j+n = A∞) = 1. (4.84)

Finally, since A∞ = v1⊤
K due to A being a primitive matrix, we conclude that

lim
n→∞

Ãj�j+n a.s.= v1⊤
K (4.85)

for any time instant j ≥ 1. ■

4.D.4 Uniform Boundedness

In this section, we show that, under Assumption 2.2

Ψ = sup
j≥1
∥Ψj∥

a.s.
< ∞. (4.86)

For that purpose, first, we show that Lemma 4.1 implies that
∑K
k=1 vk logψk,i(θ◦) is a

sub-martingale. To see this, observe that by (4.40),

Eξi

[ K∑
k=1

vk logψk,i(θ◦)
]
≥

K∑
k=1

vk logµk,i−1(θ◦), (4.87)

and in turn, by (4.39),

Eτi−1

[ K∑
k=1

vk logµk,i−1(θ◦)
]
≥

K∑
k=1

vk logψk,i−1(θ◦). (4.88)

Since it is also a non-positive sub-martingale, it converges to a finite limit almost
surely [40, Chapter 11.5], which means that as i→∞,

K∑
k=1

vk logψk,i(θ◦)
a.s.
> −∞

=⇒ logψk,i(θ◦)
a.s.
> −∞, ∀k

=⇒
K∑
k=1
− logψk,i(θ◦)

a.s.
< ∞

=⇒ ∥Ψi∥
a.s.
< ∞. (4.89)

In addition, for any finite time instant j, it is true thatψk,i(θ◦) > 0 for each agent k for
the following reason. Due to Assumption 2.2, the initial beliefs are positive. Moreover,
the likelihood at the true hypothesis by definition cannot be 0 for the received obser-
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vations. Furthermore, the geometric combination rule results in the intersection of
the supports of its arguments [35]. Consequently, for any time instant j, it is true that
∥Ψj∥ <∞. Combining this with (4.89) establishes (4.86).
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5 Markovian States

5.1 Introduction1

In many applications, the hidden state or hypothesis that the agents are interested in
tracking is time-varying, such as the position of a moving object, the concentration
of air pollutants, and the product quality of a brand. In all situations, the agents will
attempt to cooperatively track the dynamic state by using observations emitted by the
underlying physical systems.

This setting is general enough and can be used in many engineering applications,
including target tracking, environmental monitoring, and opinion formation over
networks. For example, consider an economic network where the individual agents are
trying to decide which currency (e.g., USD, EUR, CHF) is the best option to buy now.
The optimal choice (true hypothesis) can be changing rapidly. Most of the literature
on social learning ignores the dynamic nature of the truth, or assumes slow transition
models.

In this chapter, we propose a networked filtering algorithm to track the state of a
general hidden Markov model (HMM). We also analyze the performance and steady-
state behavior of the resulting distributed strategy. In this process, we clarify questions
about the benefit of cooperation and the nature of equilibria in social networks under
dynamic environments.

5.1.1 Contributions

• In Sec. 5.3.1, we propose an HMM filtering algorithm for multi-agent networks.
The algorithm requires only one round of communication between agents per
state change. Moreover, it utilizes the knowledge of the transition model, which
allows it to track highly dynamic states.

1The material in this chapter is based on [71, 72].
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• In Sec. 5.4, we study the deviation of the proposed algorithm from the opti-
mal centralized strategy defined in Sec. 5.2.1. Geometric ergodicity is the only
assumption on the transition model. The specialization of the results to the
single-agent case is a contribution to the Bayesian filtering literature.

• In Sec. 5.5, we provide recursive expressions for the probability of error across
the network for the binary hypothesis testing case. Furthermore, under Gaussian
data distributions, we obtain an asymptotic convergence result in distribution.
The result implies that the agents attain steady-state probability of errors, which
can vary across the agents depending on their centrality.

5.2 Problem Setting

In this chapter, we allow the state of nature to be dynamic. It is now a time-dependent
random variable, and we denote it by θ◦

i .

The value µk,i(θ) represents the confidence level that agent k has at time i about θ being
the true hypothesis θ◦

i (which is assumed to belong to a set Θ). The true hypothesis is
a random variable and it will be assumed to evolve according to some Markov chain,
known to all agents. We use the following notation for the transition model:

T(θi|θi−1) ≜ P(θ◦
i = θi|θ◦

i−1 = θi−1). (5.1)

Conditioned on θ◦
i , the observation is distributed according to some likelihood func-

tion known to agent k, and denoted by Lk(ξk,i|θ◦
i ). These agent-specific likelihoods

can be probability density or mass functions depending on whether the observations
are continuous or discrete. In this chapter, for ease of notation, we assume the observa-
tions are continuous. Nevertheless, our analysis is also valid for discrete observations
with proper adjustments, e.g., by changing integrals to summations. Moreover, in this
chapter, we have the following additional conditions.

Assumption 5.1 (Independent observations). Conditioned on the true state,
the observations are independent over space. More specifically, let ξi ≜ {ξk,i}Kk=1,
collect all observations from across the agents at time i. Then, the joint likelihood
is given by,

L(ξi|θ◦
i ) =

K∏
k=1

Lk(ξk,i|θ◦
i ). (5.2)

In this work, agents will be required to communicate only once with their neighbors per
iteration. The underlying communication topology is assumed to satisfy the following
condition.
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Assumption 5.2 (Doubly-stochastic matrix). We assume that A is a doubly-
stochastic and symmetric matrix, namely,

A1K = 1K , A = AT. (5.3)

We have already seen that strong connectivity causes the information to disperse
throughout the entire network given sufficient iterations. When the true hypothesis
is fixed (i.e., θ◦

i = θ◦), this allows the agents to reach agreement and learn θ◦ almost
surely, as discussed in Chapter 2. However, strong connectivity is not sufficient for
network agreement if the true hypothesis is changing rapidly before local information
reaches other agents, as in the current chapter.

5.2.1 Optimal Centralized Belief Recursion

Let us denote the observation history of all agents across the network up to time i by
F i ≜ {ξj}ij=1. Likewise, let us denote the posterior distribution (or belief), which is a
probability mass function (pmf) due to the assumed finite state-space model, by the
notation:

µ⋆i (θi) ≜ P(θ◦
i = θi|F i). (5.4)

It is known that the above distribution satisfies the optimal Bayesian filtering recursion
[48]:

µ⋆i (θi) ∝ L(ξi|θi)η⋆i (θi), (5.5)

where η⋆i (θi) is the time-adjusted prior defined by

η⋆i (θi) ≜ P(θ◦
i = θi|F i−1) =

∑
θi−1∈Θ

T(θi|θi−1)µ⋆i−1(θi−1). (5.6)

Once the posterior is updated by (5.4), the state estimator at time i is obtained from
the maximum a-posteriori construction:

θ̂⋆i ≜ arg max
θi∈Θ

µ⋆i (θi) (5.7)

The main challenge with this solution method is that it requires a fusion center to
gather all data from across time and agents. In Section 5.4, we will examine how close
the beliefs generated by the proposed decentralized algorithm will get to the above
centralized posterior given by (5.5)–(5.6).

91



Markovian States

Remark 5.1 (Sequence estimation). In this chapter, the focus is on estimating
the current state from past observations. If a sequence of hidden states, including
both future or past states, is to be estimated, then single state-estimators can be
combined with dynamic programming principles, such as in the Viterbi algorithm
[48, 73].

5.3 Decentralized Bayesian Filtering

The centralized solution (5.5)–(5.6) can be disadvantageous for various reasons: (i)
collecting all data at a single fusion location makes the system vulnerable with a single
point of failure; (ii) the agents may be reluctant to share their raw data with a remote
central processor for privacy or security reasons; and (iii) communications back and
forth with a remote fusion center is costly. For these reasons, we pursue instead a
decentralized solution that is able to approach the performance of the centralized
solution. In the decentralized approach, agents will only share data with their imme-
diate neighbors; actually, the agents will not be required to share their raw data but
only their updated belief vectors. The resulting solution will be more robust to node or
link failure and more communication efficient, and will lead to an effective solution
method.

5.3.1 Diffusion HMM Filtering

The streaming observations arriving at each agent are generally only partially informa-
tive about the true state of nature, θ◦

i . For this reason, agents will need to cooperate
with their neighbors, thus leading to a learning mechanism that allows information to
diffuse through the network for enhanced performance. To do so, we propose a social
Bayesian filtering algorithm where cooperation among agents takes advantage of the
notion of diffusion learning (see, e.g., [7, 9]).

Specifically, at each time instant i, every agent k first time-adjusts or evolves its belief
from i− 1, denoted by µk,i−1(θi−1), via the Chapman-Kolmogorov equation [48] and
generates an updated prior denoted by ηk,i(θi):

ηk,i(θi) =
∑

θi−1∈Θ
T(θi|θi−1)µk,i−1(θi−1) (Evolve) (5.8)

This relation is motivated by the optimal update (5.6), except that optimal beliefs are
replaced by their local versions at agent k. In the next step, agents seek to incorporate
the information from their newly arrived private observations. This can be achieved

92



5.3 Decentralized Bayesian Filtering

by considering the following regularized optimization problem:

min
ψ∈∆H

{
DKL(ψ||ηk,i)− γ Eψ logLk(ξk,i|θi)

}
(5.9)

where ∆H is the probability simplex of dimension H , and Eψ is the expectation com-
puted with respect to ψ, i.e.,

Eψ logLk(ξk,i|θi) ≜
∑
θi∈Θ

ψ(θi) logLk(ξk,i|θi). (5.10)

The objective function in (5.9) consists of two terms. The first term is the KL-divergence
term that penalizes the disagreement with the time-adjusted prior {ηk,i}. The second
term corresponds to the log-likelihood of the observation ξk,i averaged over the hy-
potheses with respect to ψ. The cost in (5.9) then seeks to minimize disagreement with
the prior while maximizing the likelihood of the observation; the two terms are coupled
by a regularization parameter γ > 0. As we show in the sequel, different special cases of
the problem setting might necessitate different γ values, e.g., γ = K, γ = 1. Therefore,
we continue with a general parameter γ > 0. The objective function in (5.9) can be
expanded as

∑
θi∈Θ

ψ(θi)
(

log ψ(θi)
ηk,i(θi)

− γ logLk(ξk,i|θi)
)

=
∑
θi∈Θ

ψ(θi) log ψ(θi)
ηk,i(θi)(Lk(ξk,i|θi))γ

(5.11)

The RHS of (5.11) is a KL-divergence under a proper normalization (to make sure the
term in the denominator is a pmf). Minimizing (5.11) over ψ results in the following
local γ-scaled Bayesian adaptation step for each agent:

ψk,i(θi) ∝ (Lk(ξk,i|θi))γηk,i(θi) (Adapt) (5.12)

where γ > 0 scales the likelihood of the new observation against prior information.
After agents independently obtain their intermediate beliefsψk,i according to (5.8) and
(5.12), they exchange these beliefs with their neighbors. Each agent k will then need to
fuse the beliefs received from the neighbors, and one way to do so is to seek the belief
vector µ that solves [35, 74]:

min
µ∈∆H

∑
ℓ∈Nk

aℓkDKL(µ||ψℓ,i)

 . (5.13)

This objective function penalizes the average disagreement with the neighbors’ inter-
mediate beliefs and it can be expanded as

∑
θi∈Θ

µ(θi)
∑
ℓ∈Nk

aℓk log µ(θi)
ψℓ,i(θi)

=
∑
θi∈Θ

µ(θi) log µ(θi)∏
ℓ∈Nk

[ψℓ,i(θi)]aℓk
(5.14)
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where the term on the RHS of (5.14) can be seen as a KL divergence under proper
normalization, whose minimizer is given by the following geometric-average combina-
tion:

µk,i(θi) ∝
∏
ℓ∈Nk

(
ψℓ,i(θi)

)aℓk
(Combine). (5.15)

Exchanging and combining the beliefs repeatedly allows the local information to
diffuse through the network. The complete procedure leads to the diffusion HMM
strategy (DHS), which is listed in (5.16)–(5.18).

Algorithm 5.1 Diffusion HMM strategy (DHS)

1: set initial priors µk,0(θ) > 0, ∀θ ∈ Θ and ∀k ∈ N
2: choose γ > 0
3: while i ≥ 1 do
4: for each agent k = 1, 2, . . . ,K do
5: time-adjust the belief from previous iteration:

ηk,i(θi) =
∑

θi−1∈Θ
T(θi|θi−1)µk,i−1(θi−1) (5.16)

6: receive private observation ξk,i
7: adapt locally to obtain intermediate belief:

ψk,i(θi) ∝ (Lk(ξk,i|θi))γηk,i(θi) (5.17)

8: combine received beliefs from the neighbors:

µk,i(θi) ∝
∏
ℓ∈Nk

(
ψℓ,i(θi)

)aℓk
(5.18)

9: end for
10: i← i+ 1
11: end while

The proposed DHS algorithm is a generalization of the following special cases:

• When the network consists of a single-agent, i.e.,K = 1, the strategy is equivalent
to the traditional optimal Bayesian filtering algorithm [48, Chapter 3] when the
local updates are Bayesian, i.e., when γ = 1.

• If γ = 1, and the true hypothesis is fixed, i.e.,

T(θi|θi−1) =

1, θi = θi−1

0, θi ̸= θi−1
, (5.19)

then, the algorithm reduces to the canonical geometric social learning listed in
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Algorithm 2.1.

• The beliefs of agents will match the optimal centralized belief (5.5) exactly, if the
network is fully-connected with aℓk = 1/K ∀ℓ, k ∈ N , all initial priors are equal
(µ⋆0 = µk,0, ∀k ∈ N ), and γ = K. This conclusion follows by induction. First,
assume that for each agent k, µk,i−1 = µ⋆i−1. This would imply that ηk,i = η⋆i
by the equivalence of the time-adjustment steps (5.6) and (5.16). Combining
the adapt (5.17) and combine (5.18) steps, the belief of agent k at time i then
becomes

µk,i(θi) ∝
∏
ℓ∈Nk

(
Lk(ξk,i|θi)

)γaℓk
(
ηk,i(θi)

)aℓk

∝ η⋆i (θi)
K∏
ℓ=1

Lk(ξk,i|θi) (5.20)

which is equivalent to the centralized update (5.5). Since the base case µ⋆0 = µk,0
also holds, we conclude by induction that, the beliefs at all iterations will match
the centralized belief.

We continue with the general strategy (5.16)–(5.18). Since different γ values correspond
to different special cases, we continue to use a general step-size γ > 0.

5.4 Optimality Gap

In this section, we analyze the disagreement between the diffusion HMM strategy
(5.16)–(5.18) and the centralized solution (5.5)–(5.6). For this section alone, we assume
a regularity condition on the likelihood functions for technical reasons (similar to what
was done in [75]).

Assumption 5.3 (Regularity condition). The absolute log-likelihood functions
are uniformly bounded over their support for all agents:∣∣∣ logLk(ξ|θ)

∣∣∣ ≤ CL, ∀k ∈ N , θ ∈ Θ. (5.21)

Assumption 5.3 implies that the likelihood functions do not get arbitrarily close to
zero or arbitrarily large in their support. This ensures that each private signal ξ has
bounded informativeness. For example, discrete signal space models or truncated
Gaussian likelihoods satisfy this assumption.

Next, we introduce conditions on the transition model, which will play a crucial part
in the analysis.
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5.4.1 Transition Model

We assume that the transition Markov chain is irreducible and aperiodic [10, Chapter 2].
This means that there exists a constant integer n > 0 such that for any two hypotheses
θ, θ′ ∈ Θ:

Tn(θ|θ′) > 0, (5.22)

where Tn is the n-fold application of the transition kernel. This condition also implies
that the Markov chain is ergodic because the number of hypotheses H is finite [10,
Chapter 2]. In other words, repeated application of the transition kernel T will converge
to a limiting distribution regardless of the initial input distribution. More formally, for
any input distribution µ ∈ ∆H ,

lim
n→∞

∑
θ′∈Θ

Tn(θ|θ′)µ(θ′) = π(θ), (5.23)

where π is the Perron vector of the H ×H transition matrix T ≜ [T(θ|θ′)]. In this work,
we consider the geometrically ergodic [48, Chapter 2] subclass of transition models.
In the following, we define these models using the strong-data processing inequality
(SDPI) [55].

Definition 5.1 (Strong-data processing inequality (SDPI) [55]). Consider any
two discrete distributions over Θ, µa and µb, satisfying 0 < DKL(µa||µb) <∞, and
introduce their time-adjusted versions according to the Chapman-Kolmogorov
equation as in (5.16):

ηa(θi) =
∑

θi−1∈Θ
T(θi|θi−1)µa(θi−1) (5.24)

and similarly for ηb. Then, the SDPI states that:

DKL(ηa||ηb) ≤ κKL(T)DKL(µa||µb) (5.25)

where κKL(T) ∈ [0, 1] is a contraction coefficient defined as

κKL(T) ≜ sup
µa,µb

DKL(ηa||ηb)
DKL(µa||µb) . (5.26)

Observe that the coefficient is only dependent on the transition model, and is not
a function of the input distributions. An upper bound on κKL(T) is given by the Do-
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brushin’s contraction coefficient [48, 55, 76], which is defined by

κ(T) ≜ sup
θ′,θ′′∈Θ

1
2
∑
θ∈Θ

∣∣∣∣T(θ|θ′)− T(θ|θ′′)
∣∣∣∣ ∈ [0, 1], (5.27)

It is known that [55]:

κKL(T) ≤ κ(T), κKL(T) = 1⇐⇒ κ(T) = 1. (5.28)

For example,

• If the transition model is a binary symmetric channel:

T(θi|θi−1) =

1− α, θi = θi−1

α, θi ̸= θi−1
, (5.29)

then κ(T) = |1 − 2α| [55]. Notice that this is a symmetric function around the
transition probability α = 0.5, e.g., α = 0.2 and α = 0.8 yield the same coefficient.

• The coefficient κ(T) = 0 if, and only if [48, Chapter 2],

T(θi|θi−1) = π(θi). (5.30)

Note that this implies, for any µ ∈ ∆H ,∑
θi−1∈Θ

T(θi|θi−1)µ(θi−1) =
∑

θi−1∈Θ
π(θi)µ(θi−1) = π(θi) (5.31)

In other words, the transition kernel will output the same distribution π(θ) re-
gardless of the input distribution µ(θ). Observe that the rapidly mixing binary
symmetric channel with transition probability α = 0.5 is an example of this case.

In general, for two input distributions µa and µb, the output distributions resulting
from an n-fold application of the transition kernel, i.e.,

ηan(θi) =
∑

θi−n∈Θ
Tn(θi|θi−n)µa(θi−n), (5.32)

and similarly for ηbn, satisfy the following SDPI:

DKL(ηan||ηbn) ≤ (κ(T))nDKL(µa||µb) (5.33)

It is clear that if κ(T) < 1, then the disagreement between any two input distributions
will approach 0 exponentially fast. Transition models for which κ(T) < 1 are said to be
geometrically ergodic [48, Chapter 2]. It is seen from (5.33) that the coefficient κ(T) is a
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measure of how rapidly the initial conditions are forgotten. In particular, as κ(T)→ 0,
forgetting is faster.

Assumption 5.4 (Transition model). The transition model T is assumed to be
geometrically ergodic, i.e., κ(T) < 1.

The class of geometric ergodic transition models comprises a large group of models.
For instance, non-deterministic binary symmetric channels, i.e., with a transition
probability α ∈ (0, 1), are geometrically ergodic. Moreover, transition matrices with
all positive elements, and in general, those that satisfy a minorization condition [48,
Theorem 2.7.4] are examples of geometrically ergodic transition models. However, the
geometrically ergodic class excludes some models such as the fixed hypothesis case,
where κ(T) = 1. We elaborate more on this issue in the sequel.

5.4.2 Disagreement with the Centralized Strategy

We introduce the following time-varying risks to compare the performance of the
diffusion HMM strategy (5.16)–(5.18) with the centralized solution (5.5)–(5.6):

Jk,i ≜ EFiDKL(µ⋆i ||µk,i) (5.34)

and

J̃k,i ≜ EFi−1DKL(η⋆i ||ηk,i) (5.35)

where EFi represents expectation over the distribution ofFi, which collects all observa-
tions from across the network until time i. Notice that the risks in (5.34)–(5.35) are not
random variables, since the corresponding KL-divergences are averaged over all pos-
sible realizations of observations. The posterior risk Jk,i in (5.34) is the disagreement
between the belief of agent k and the centralized belief at time i, after the observations
ξi are received. In comparison, the risk J̃k,i in (5.35) is the divergence of time-adjusted
priors, which measures the disagreement before the observations have been emitted.

Our first result establishes that the disagreement between the centralized and dis-
tributed solutions is asymptotically bounded for all agents in the network.
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Theorem 5.1 (Asymptotic bounds). For each agent k, under Assumptions 5.1–5.4,
the risks (5.34) and (5.35) are asymptotically bounded, namely,

lim sup
i→∞

Jk,i ≤
2
√
KγλCL

1− κ(T) (5.36)

and

lim sup
i→∞

J̃k,i ≤
2κ(T)

√
KγλCL

1− κ(T) (5.37)

where λ ≜ max{|1− K
γ |, ρ2}, and ρ2 is the second largest modulus eigenvalue ofA.

Proof. See Appendix 5.A. ■

Swift and random changes in the environment can prevent a strongly-connected
network from approaching the performance of the centralized solution close enough—
especially when the network is sparse and it takes more time for the information to
diffuse to all agents than the rate at which the state is changing. Therefore, the bounds
in Theorem 5.1 are not generally close to 0. The following remarks are now in place.
Simulations that support these observations appear in Section 5.6.

• Matching the centralized strategy: The bounds (5.36) and (5.37) will be tight
when the distributed solution reduces to the centralized implementation, which
happens with a uniformly weighted fully-connected network (aℓk = 1/K ∀ℓ, k ∈
N , ρ2 = 0), same initial priors (µ⋆0 = µk,0,∀k ∈ N ), and γ = K as shown in (5.20).
In this case, the upper bounds will become zero as expected.

• Stability: The bounds (5.36) and (5.37) are independent of the initial beliefs as
long as Assumption 2.2 is satisfied. Indeed, geometric ergodicity is sufficient
to asymptotically forget the initial conditions. In this way, the filter is robust to
incorrect initializations.

• Network connectivity: Note that as γ → K, the bounds become proportional to
ρ2, the mixing rate of the graph. This aspect emphasizes the benefit of cooper-
ation. Highly-connected graphs, with small ρ2, will be closer to the centralized
solution while sparse networks or non-cooperative agents will have higher devia-
tion.

• Network size: The bounds are also proportional to the number of agents. The
disagreement between the centralized solution and the individual agents in-
creases with the square-root of the network size. Note that this does not mean
agents would perform worse if new agents join the network. It is the relative
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performance compared to the optimal solution, which has access to data from
all agents, that could decrease.

• Ergodicity: Notice that when κ(T) → 0, from the bound (5.37), it is obvious
that J̃k,i → 0. This is anticipated because if the coefficient κ(T) = 0, the time-
adjustment steps of the centralized and decentralized strategies (5.6) and (5.16)
become

η⋆i (θi) =
∑

θi−1∈Θ
T(θi|θi−1)µ⋆i−1(θi−1) (5.31)= π(θi),

ηk,i(θi) =
∑

θi−1∈Θ
T(θi|θi−1)µk,i−1(θi−1) (5.31)= π(θi), (5.38)

regardless of the input distributions µ⋆i−1(θi−1) and µk,i−1(θi−1). As a result,

J̃k,i
(5.35)= EFi−1DKL(η⋆i ||ηk,i)

(5.38)= 0. (5.39)

Therefore, the bound (5.37) captures the effect of the ergodicity of the transition
model via the ergodicity coefficient κ(T) accurately. In particular, the results
imply that the bound is tight for rapidly changing binary symmetric transition
models where κ(T)→ 0.

• Informativeness of observations: Nonetheless, the bounds fall short in capturing
the effect of the observations. For example, if the true hypothesis is fixed, then the
transition model T satisfies (5.19). In this case, for two distributions µa, µb ∈ ∆H ,

ηa(θi) =
∑

θi−1∈Θ
T(θi|θi−1)µa(θi−1) (5.19)= µa(θi) (5.40)

and similarly for ηb. Then,

DKL(ηa||ηb) = DKL(µa||µb), (5.41)

and consequently, κ(T) = 1. Since this transition model is not geometrically er-
godic, the bounds do not cover this case. However, it is known from the standard
social learning literature (recall Theorems 2.1 and 2.2) that when the observations
of the agents are informative enough, that is to say, the observations provide
sufficient information about the underlying state (Assumption 2.1), all agents
will learn the true hypothesis eventually. In other words, beliefs of agents, as
well as the belief of the centralized strategy, on wrong hypotheses go to 0. This
means that log-beliefs on wrong hypotheses become degenerate, and hence, it is
not clear how the KL-divergences in the risks (5.34)–(5.35) would behave in this
situation, or whether the KL-divergence is a meaningful metric here. We leave
examining this interesting regime of κ(T)→ 1, where the dominant factor is the
informativeness of observations rather than the ergodicity, to future work.
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• Single-agent case: In fact, the distinction between the ergodicity of the transition
model and the informativeness of the observations arises in the analysis of
single-agent strategies as well. The stability of the algorithm would refer to
the conditions under which a wrongly initialized belief converges to the true
posterior distribution in HMMs. In the notation of this work, this is the special
case of γ = K = 1 and ρ2 = 0. Remember that in this special case the proposed
diffusion HMM strategy is equivalent to a traditional optimal Bayes filter [48,
Chapter 3]. One criterion that the literature on the single-agent case uses is
whether the total variation distance between the true posterior and the agent’s
belief vanishes in the mean asymptotically, i.e., whether (setting the single-agent
index k = 1),

lim
i→∞

EFi

[∑
θ∈Θ

∣∣∣µ⋆i (θ)− µ1,i(θ)
∣∣∣] ?= 0, (5.42)

when the initial belief of the agent is not accurate, i.e., when

P(θ◦
0 = θ) = µ⋆0(θ) ̸= µ1,0(θ). (5.43)

The total variation distance in (5.42) can vanish because of two mechanisms:
either the observations are sufficiently informative about the true state, or the
transition model is sufficiently ergodic. Even though there are some works that
focus on the informativeness of observations [77], most of the results in the
literature rely on ergodicity to establish stability [78, 79]. Similarly, Theorem 5.1
also depends on the ergodicity of the transition model. In particular, reference
[79] studies the stability via the Dobrushin coefficient κ(T) and concludes that
as long as κ(T) < 1/2, regardless of the observation model, (5.42) is satisfied. In
comparison, our results are in terms of KL-divergences, but they can be expressed
in terms of total variation distances if we use Pinsker’s inequality [13, Chapter 3].
For the single-agent case, we have

∑
θ∈Θ

∣∣∣µ⋆i (θ)− µ1,i(θ)
∣∣∣ ≤(2DKL(µ⋆i ||µ1,i)

) 1
2 . (5.44)

If we take expectations, this relation implies

EFi

[∑
θ∈Θ

∣∣∣µ⋆i (θ)− µ1,i(θ)
∣∣∣] ≤ EFi

(
2DKL(µ⋆i ||µ1,i)

) 1
2

(a)
≤
(
2J1,i

) 1
2 , (5.45)

where (a) follows from Jensen’s inequality. Finally, taking the limit of both sides,
we arrive at

lim
i→∞

EFi

[∑
θ∈Θ

∣∣∣µ⋆i (θ)− µ1,i(θ)
∣∣∣] ≤ √2 lim

i→∞

(
J1,i

) 1
2 (b)= 0, (5.46)

where (b) follows from the fact that the bound (5.36) is equal to zero if γ = K = 1
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and ρ2 = 0. This is a more general result, namely that the single-agent Bayesian
filter is stable whenever κ(T) < 1, as long as the informativeness of observations
are bounded (Assumption 5.3).

5.5 Probability of Error and Convergence

The previous section analyzed the closeness of the diffusion HMM strategy to the
optimal centralized solution. In this section, we study the error probability for each
agent. There are a few results for the probability of error of HMM filtering, even in the
single agent case. One notable result is [80] where error recursions are obtained for
the single-agent binary hypothesis setting case. In a similar spirit, we will obtain recur-
sive equations for the probability density functions (pdfs) that capture the stochastic
behavior of the underlying system. This will not only provide recursive formulas for
the error probabilities, but will also allow us to deduce asymptotic properties for the
diffusion HMM strategy. Similar to [80], for this section, we shift our focus to the binary
hypothesis setting, i.e., throughout this section, we set H = 2 and Θ = {0, 1}. We do
not need to restrict ourselves to bounded log-likelihood signal models in this section,
as was the case in Assumption 5.3. In this setting, the MAP-classifier at agent k at time
instant i becomes

θ̂k,i =

1, if µk,i(1) > µk,i(0)
0, if µk,i(0) ≥ µk,i(1)

. (5.47)

This estimator is equivalent to

θ̂k,i =

1, if wk,i > 0
0, if wk,i ≤ 0

(5.48)

in terms of the log-belief ratiowk,i defined as

wk,i ≜ log µk,i(1)
µk,i(0) . (5.49)

As such, the probability of error for agent k at time instant i is given by:

pk,i ≜ P(θ◦
i = 1,wk,i ≤ 0) + P(θ◦

i = 0,wk,i > 0). (5.50)

Let fk,i(θ, wk) denote the probability density function of the joint variables {θ◦
i ,wk,i} for

agent k at time i. Note that the joint variables {θ◦
i ,wk,i}mix a discrete and a continuous

random variable. Here, we use the general definition of density, i.e., density is the
Radon-Nikodym derivative with respect to a measure. The corresponding measure
for {θ◦

i ,wk,i} is the product measure of the counting measure for θ◦
i and the Lebesgue

measure for wk,i [81]. For example, we can evaluate the probability that θ◦
i = θ and
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wk,i lies within the infinitesimal interval (wk, wk + dwk) by computing

fk,i(θ, wk)dwk = P(θ◦
i = θ,wk,i ∈ (wk, wk + dwk)) (5.51)

In this way, the probability of error (5.50) is given by

pk,i =
∫ 0

wk=−∞
fk,i(1, wk)dwk +

∫ ∞

wk=0
fk,i(0, wk)dwk. (5.52)

We further consider the probability density function involving the log-beliefs across all
agents, namely,

fi(θ, w)dw1dw2 · · · dwK ≜ P(θ◦
i = θ,wi ∈ (w,w + dw)), (5.53)

in terms of the aggregate variables:

wi ≜ col{wℓ,i}Kℓ=1, w ≜ col{wℓ}Kℓ=1. (5.54)

If we integrate (5.53) over all agents with the exception of agent k, we can determine
the marginal density for agent k, namely,

fk,i(θ, wk) =
∫
...

∫
fi(θ, w)dw1 · · · dwk−1dwk+1 · · · dwK . (5.55)

In what follows, we will derive a temporal recursion for the joint density given by (5.53),
from which agent-specific densities can then be deduced. To this end, first observe
that the diffusion equations (5.16)-(5.18) can be written compactly in terms of the
log-belief ratio:

wk,i =
∑
ℓ∈Nk

aℓkγ log Lℓ(ξℓ,i|1)
Lℓ(ξℓ,i|0) +

∑
ℓ∈Nk

aℓk log ηℓ,i(1)
ηℓ,i(0)

=
∑
ℓ∈Nk

aℓkγ log Lℓ(ξℓ,i|1)
Lℓ(ξℓ,i|0) +

∑
ℓ∈Nk

aℓk log T(1|0) + T(1|1)exp{wℓ,i−1}
T(0|0) + T(0|1)exp{wℓ,i−1}

. (5.56)

In vector form, equation (5.56) leads to

wi = ATνi +ATχi (diffusion HMM), (5.57)

where we are introducing the vector of γ-scaled log-likelihood ratios (LLR) across the
network:

νi ≜ col
{
γ
Lℓ(ξℓ,i|1)
Lℓ(ξℓ,i|0)

}K
ℓ=1

, (5.58)
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and the vector of time-adjusted prior belief log-ratios across the network:

χi ≜ col

 log T(1|0) + T(1|1)exp{wℓ,i−1}
T(0|0) + T(0|1)exp{wℓ,i−1}


K

ℓ=1

. (5.59)

If the underlying distributed strategy is instead the consensus-based (recall Algo-
rithm 2.4 from Chapter 2) in lieu of the diffusion strategy (5.16)–(5.18), then (5.57)
would be replaced by

wi = νi +ATχi (consensus HMM). (5.60)

Observe that the joint density over two consecutive time instants of {θ◦
i−1,wi−1,θ

◦
i ,wi}

satisfies

P
(
θ◦
i = θ,wi ∈ (w,w + dw),θ◦

i−1 = θ′,wi−1 ∈ (w′, w′ + dw′)
)

= S
(θ)
i (w,w′)T(θ|θ′)fi−1(θ′, w′)dWdW ′ (5.61)

where we are using dW ≜ dw1dw2 · · · dwK and dW ′ ≜ dw′
1dw

′
2 · · · dw′

K for notational
brevity, and where we are introducing the conditional probability

S
(θ)
i (w,w′)dW ≜ P(wi ∈ (w,w + dw)|θ◦

i = θ,θ◦
i−1 = θ′,wi−1 = w′)

(a)= P(wi ∈ (w,w + dw)|θ◦
i = θ,wi−1 = w′) (5.62)

where (a) follows from the fact that wi is a function of ξi only, once wi−1 and θ◦
i are

given. Therefore, the log-belief ratio wi is conditionally independent of θ◦
i−1 — see

(5.57) for diffusion and (5.60) for consensus. Note that, for diffusion algorithms, in
general, even under the independence Assumption 5.1:

S
(θ)
i (w,w′)dW ̸=

K∏
ℓ=1

P(wℓ,i ∈ (wℓ, wℓ + dwℓ)|θ◦
i = θ,wi−1 = w′) (5.63)

because the newly arrived data ξk,i is utilized by agent k as well as by its neighbors in
the same iteration. On the other hand, for consensus, under Assumption 5.1,

S
(θ)
i (w,w′)dW =

K∏
ℓ=1

P(wℓ,i ∈ (wℓ, wℓ + dwℓ)|θ◦
i = θ,wi−1 = w′) (5.64)

since the fresh data is used by the observing agent only. In other words, in the consen-
sus implementation, each log-beliefwk,i is a function of that agent’s observation ξk,i
only (given θ◦

i andwi−1) and does not depend on the observations at the other agents
at that time. This distinction between diffusion and consensus can be seen from (5.57)
and (5.60).
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Now, marginalizing (5.61) with respect to the state θ′ and the log-belief ratio w′ at the
earlier time instant yields the following temporal recursion for the joint density in
(5.53):

fi(θ, w)dW =
∑
θ′

T(θ|θ′)

∫
w′
P(θ◦

i = θ,wi ∈ (w,w + dw),θ◦
i−1 = θ′,wi−1 ∈ (w′, w′ + dw′))


(5.65)

which implies that

fi(θ, w) =
∑
θ′

T(θ|θ′)

∫
w′
S

(θ)
i (w,w′)fi−1(θ′, w′)dW ′

 (5.66)

To summarize, the probability of error at each time instant i can be computed by (i)
using (5.66) to find the joint density at time i, (ii) marginalizing the joint density to find
the agent-specific density by (5.55), and finally (iii) integrating the agent density as in
(5.52).

Remark 5.2 (Evaluation of integrals). Finding closed-form expressions to the
integral expressions (e.g., (5.55), (5.66)) might not be feasible. One can apply
numerical integration methods such as Monte Carlo techniques [82] to compute
the desired integrals.

The analysis until here holds for general transition and likelihood models. However,
the kernel S(θ)

i (w,w′) might not be obtained in closed form in general. Therefore, for
stronger results, we focus on Gaussian likelihood models in the next section.

5.5.1 Gaussian Likelihoods

Thus, let us consider now Gaussian models of the form:

Lk(ξk,i|θ◦
i = 1) = 1√

2πσ2
k

exp
{
− (ξk,i − ζ(1))2

2σ2
k

}

Lk(ξk,i|θ◦
i = 0) = 1√

2πσ2
k

exp
{
− (ξk,i − ζ(0))2

2σ2
k

} (5.67)

where the means are assumed to satisfy ζ(0) = −ζ(1) = ζ for a constant value ζ ̸=
0, and where the agent-specific variances satisfy σ2

k > 0. The corresponding log-
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likelihood ratio appearing in (5.56) is then given by

log Lk(ξk,i|θ
◦
i = 1)

Lk(ξk,i|θ◦
i = 0) = −2ζξk,i

σ2
k

, (5.68)

and accordingly, the vector νi of γ-scaled LLRs across agents is given by

νi = col
{−2γζ

σ2
ℓ

ξℓ,i

}K
ℓ=1

. (5.69)

By Assumption 5.1, the {ξℓ,i}Kℓ=1 are independent random variables conditioned on
θ◦
i . This implies that νi is a multivariate Gaussian random variable conditioned on the

true hypothesis θ◦
i at time instant i,

νi
∣∣∣
θ◦

i

∼ G
(
β(θ◦

i ),Σ
)

(5.70)

with mean

β(θ◦
i ) ≜ col

{−2(−1)θ◦
i γζ2

σ2
ℓ

}K
ℓ=1

, (5.71)

and covariance matrix

Σ ≜ diag
{4γ2ζ2

σ2
ℓ

}K
ℓ=1

. (5.72)

Next, we treat the consensus and diffusion cases separately. The consensus case is
straightforward and useful to understand the diffusion case.

Consensus

Using (5.60) and the distribution (5.70) for νi, we conclude that the conditional pdf of
wi given the current state and the prior log-belief ratio vector wi−1 is also Gaussian
and equal to

S
(θ)
i (w,w′) =

exp
{
− 1

2(w − ρ(θ)(w′))TΣ−1(w − ρ(θ)(w′))
}

√
(2π)Kdet(Σ)

(5.73)

where the mean is defined by

ρ(θ)(w′) ≜ β(θ◦
i ) +ATχi

∣∣∣∣
θ◦

i =θ,wi−1=w′
. (5.74)

Observe that since Σ is a diagonal matrix, Eq. (5.73) can also be written as the multipli-
cation of individual conditional densities, as already suggested by (5.64).
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Diffusion

The covariance matrix Σ in (5.72) is non-singular since it is diagonal with positive
diagonal entries. Consequently, νi in (5.70) is a non-degenerate random variable.
In the consensus implementation (5.60), the variable wi is an additive shift of νi
conditioned onwi−1. Therefore,wi is also a non-degenerate random variable and it
admits the conditional density (5.73).

In diffusion, however,wi is an affine transformation of νi—see (5.57). The combination
matrix A need not be invertible and hence,wi might not admit a density in RK in gen-
eral. In Appendix 5.C, we show that by representingwi in an r-dimensional subspace,
where r is the rank ofA, no information is lost and the analysis and conclusions can be
adjusted accordingly.

Remark 5.3 (Difference from [80]). In [80], the probability of error recursions
are studied for the single-agent case only. Moreover, the recursions are based on
belief differences instead of log-belief ratios. In that case, transition kernels are
not Gaussian even under Gaussian observation models, as opposed to (5.73) and
(5.131).

5.5.2 Asymptotic Convergence

In addition to providing a way for calculating the error probabilities, the density evolu-
tion recursion (5.66) also allows us to show that agents exhibit a regular behavior in
the limit. In particular, the distributions of the beliefs µk,i and log-belief ratioswk,i will
converge to the distribution of some time-independent random variables. That is to
say, they will converge in distribution [40, Chapter 17]. A sequence (over time index i)
of random variables xi converges to a limiting random variable x in distribution if it
holds that

lim
i→∞

P(xi ∈ X ) = P(x ∈ X ) (5.75)

for a set X of x, whose boundary has zero probability under the limiting distribution.
We denote this by writing

xi
d
⇝ x. (5.76)

Although beliefs can demonstrate random behavior with fluctuations in the limit,
convergence in distribution implies the existence of limiting statistics such as steady-
state probability of errors, as shown in the following result.
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Theorem 5.2 (Asymptotic probability of error). The diffusion and consensus
HMM strategies are asymptotically stable (in the sense of [83]) under binary clas-
sification, Gaussian likelihood models (5.67), and non-deterministic transition
models (i.e., T(θ|θ′) < 1 ∀θ, θ′ ∈ Θ). That is, the density function fi satisfies

lim
i→∞
∥fi − f∞∥TV = 0, (5.77)

where f∞ is a unique stationary density, and ∥ · ∥TV is the total variation norm
defined with respect to the product measure, i.e., for any two densities f and g

∥f − g∥TV ≜
1
2
∑
θ∈Θ

∫ ∣∣∣f(θ, w)− g(θ, w)
∣∣∣dW. (5.78)

This result implies the convergence of the distribution of the log-belief ratios, and
as a special case, the agent-specific probability of errors converge as well:

wk,i
d
⇝ wk,∞, lim

i→∞
pk,i = pk,∞. (5.79)

Proof. See Appendix 5.D. ■

In order to establish this result, we employ in Appendix 5.D a known result from ergodic
theory [83, Theorem 5.7.4]. As is common in ergodic theory, even though we can affirm
that there exist limiting distributions; we do not know exactly what these distributions
are. This task might be of formidable complexity in general.

Note that this result is in contrast to fixed-hypothesis social learning, where log-belief

ratios do not converge, i.e., wk,i = log µk,i(1)
µk,i(0) → −∞ (assuming w.l.o.g. that θ = 0 is

the fixed true hypothesis).

Theorem 5.2 states that the agents’ probability of error will approach a steady-state
value despite the fact that the belief vectors can fluctuate randomly in the limit.

Corollary 5.1 (Asymptotic beliefs). Theorem 5.2 implies that beliefs of the agents
converge in distribution. More formally,

µk,i
d
⇝ µk,∞, (5.80)

for a time-independent random variable µk,∞.
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Proof. By definition (5.49),

wk,i = log 1− µk,i(0)
µk,i(0) ⇐⇒ µk,i(0) = 1

1 + exp{wk,i}
. (5.81)

Since this is a continuous and non-degenerate transformation, by Theorem 5.2 and

the continuous mapping theorem [84] it holds that µk,i
d
⇝ µk,∞, for some time-

independent random variable µk,∞. This implies that the statistics of the belief distri-
bution also converge. ■

Corollary 5.1 suggests that in general, the beliefs of agents will have random charac-
teristics and will fluctuate in the long-run. This is in contrast to conventional social
learning models where beliefs on the true fixed hypothesis converge to 1 almost surely
(recall Theorems 2.1 and 2.2). In other words, all agents come to an agreement on the
truth eventually. In comparison, in the current dynamic hypothesis scenario, agents
do not even come to an agreement as shown in the next result.

Lemma 5.1 (Network disagreement). In general, the agents’ beliefs do not con-
verge to the same random variable in distribution. Namely, for any agent pair
(ℓ, k), the limiting variables µk,∞ and µℓ,∞ are not necessarily identically dis-
tributed. Moreover, agents will have different performance in the long run,
namely:

pk,∞ ̸= pℓ,∞, Jk,∞ ̸= Jℓ,∞. (5.82)

Proof. We prove this by a counter-example in Appendix 5.E. ■

Lemma 5.1 implies that rapidly changing states prevent learning the truth with full
confidence, as well as eventual network agreement, even under strongly-connected
networks where information can flow thoroughly in all directions. Moreover, when
the true state of nature is changing, agents can have different and non-vanishing
asymptotic error probabilities. In traditional social learning, agents can have different
and non-zero error probabilities in finite-time. But as time elapses, all probabilities
of error vanish, i.e., they all become 0. So, unlike the traditional setting, the dynamic
truth model gives rise to an equilibrium of wise and unwise agents in asymptotics.
That is to say, some agents will be more successful in predicting the truth than others
in steady-state. The agents’ error probabilities will be dependent on their observations’
informativeness and their relative location in the network. Indeed, this “wise agent
phenomenon” is more in line with what we observe in real-world, as against to eventual
agreement of agents on the correct hypothesis that traditional social learning literature
concludes. This observation shows the importance of incorporating the changing
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behavior of the state of nature into social learning models.

As discussed before, most of the literature on learning over strongly-connected social
networks conclude consensus across agents, although there are exceptions. The works
[63] and [64] show that when there are stubborn agents in the network that never
change their opinion, the beliefs in the long-run can fluctuate and vary, as in the
current work. Moreover, if agents tend to communicate with other agents that think
alike [85, 86]; or if they tend to use their own beliefs as substitutes for others’ beliefs in
the case of limited communication [61], then opinion clusters can emerge. The current
work gives evidence for another reason of disagreement, namely, the rapidly changing
truth.

5.6 Numerical Simulations
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Figure 5.1: The network topology.

We consider the 10−agent network dis-
played in Fig. 5.1. The combination weights
are given by the Metropolis rule [7, 58],
which results in a doubly-stochastic and
symmetric matrix with the mixing rate ρ2 =
0.86, satisfying Assumption 5.2.

The agents over the network aim to track
the true state of nature from a set of two
hypotheses, Θ = {0, 1}. For the initial simu-

lations, all agents possess the same family of truncated Gaussian likelihoods, satisfying
Assumption 5.3:

Lk(ξ|θ) =


1
Zθ

1√
2π

exp
{
−1

2(ξ − (1.5× θ)2
}
,−1 ≤ ξ ≤ 2

0, otherwise

for each agent k ∈ N , where Zθ is a normalization constant:

Zθ ≜
∫ 2

−1

1√
2π

exp
{
−1

2(ξ − (1.5× θ))2
}
dξ (5.83)

The observations are independent conditioned on the true state, satisying Assumption
5.1. The hidden state is changing with respect to the following transition model:

T(θi|θi−1) =

0.9, θi = θi−1

0.1, θi ̸= θi−1
(5.84)

for which the Dobrushin coefficient is given by κ(T) = 0.8.
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Figure 5.2: Top panel: A realization of the true hidden state. Middle panel: Belief evolution
over time for different algorithms (cHMM, dHMM, and ASL). Bottom panel: Belief evolution
over time for different γ.
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K dHMM DBF [87] ρ2

10 0.49 2.59 0.86

20 0.53 5.64 0.82

30 0.67 8.63 0.81

40 0.98 11.88 0.80

70 1.23 21.29 0.77

Table 5.1: Number of agents and average asymptotic risks across agents
1
K

K∑
k=1

Jk,∞

The top panel of Fig. 5.2 demonstrates a particular realization of hidden states θ◦
i . In

the middle panel, the belief evolution under this realization is shown for the following
algorithms: the proposed diffusion HMM filter (dHMM) with the choice γ = K, the
centralized HMM filter (cHMM), and ASL (Algorithm 2.3) with the choice of δ = 0.1.
Notice that dHMM and cHMM behave similarly with a remarkable performance for
tracking the abrupt changes in the true state. They are faster in responding to state
changes compared to ASL, which does not utilize knowledge of the transition model.

The bottom panel of Fig. 5.2 provides the belief evolution over time for different choices
of γ in the diffusion HMM filter. As γ gets closer toK = 10, we can see that the tracking
capacity of the algorithm increases, approaching the centralized algorithm.

The evolution of different agents’ risk functions Jk,i over time is provided in Fig. 5.3.
Although they all exhibit a regular and bounded behavior as suggested by Theorem
5.1, they are different with respect to different agents. More central agents have less
divergence from the optimal centralized solution as expected, whereas marginal agents,
such as agents 5, 6 and 7 present higher divergence.

Fig. 5.4a illustrates the network average Ji of asymptotic agent-specific risks Jk,i over
different network topologies. The sparse networks are associated with higher ρ2 values,
whereas smaller values correspond to dense networks. The risks were approximated
by averaging 2000 Monte Carlo simulations with γ = K. It can be seen that the average
risk is increasing with increasing ρ2. In other words, the average deviation from the
centralized solution decreases with increasing network connectivity. This observation
is consistent with Theorem 5.1. Specifically, when the network is fully-connected, the
risk vanishes as expected since the filter is stable (i.e., corrects wrong initialization) as
argued in Section 5.4.

In Table 5.1, we compare the average asymptotic risks of networks with different sizes.
From the bottom panel of Fig. 5.2 we know that choosing γ → K boosts performance,
so we set γ = K for all cases. From Fig. 5.4a we observe that increasing the network
connectivity, i.e., ρ2 → 0, boosts performance. Hence, for a fair comparison, we choose
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smaller ρ2 for larger networks—it is a challenging task to get different-sized graphs with
exactly the same ρ2. Despite this advantage, larger networks have higher risk values, in
other words, higher disagreement with the optimal centralized solution, supporting
Theorem 5.1. We also provide the average risk values for the DBF strategy from [87].
The risk values are significantly higher compared to the proposed dHMM algorithm.
Moreover, dHMM is more scalable in the sense that the growth of the risk values with
network size is worse in the DBF case.

The effect of κ(T) on the average time-adjusted prior divergence J̃∞ ≜ 1
K

∑K
k=1 J̃k,∞

can be examined from Fig. 5.4b. Remember that κ(T) is closer to 0 for rapidly mixing
transition models. Theorem 5.1 suggests that the risks should increase with increasing
κ(T). It is visible that this is the case for κ(T) ≤ 0.8, and even more, the risk is equal to
0 for κ(T) = 0 as revealed by Theorem 5.1. However, when the informativeness of the
observations starts to dominate the ergodicity of the transition model, i.e., κ(T) → 1,
the setting gets closer to traditional social learning setup and the risk vanishes, which
is unfortunately not explainable with the analysis of the present work. Also note that
binary symmetric channels (BSCs) with the same κ(T) result in the same divergence.
For example, κ(T) = 0.8 represents both BSC with change probability 0.1 and change
probability 0.9.

In Fig. 5.4c, we compare the average risk values of the analyzed diffusion with geomet-
ric averaging (GA) to (i) consensus with GA and (ii) diffusion with arithmetic averaging
(AA). The age of the utilized information is critical for highly dynamic state transitions.
Since diffusion-based strategies use the neighbors’ updated information, they outper-
form the consensus strategy, which can be seen from Fig. 5.4c. Also, diffusion-AA has
smaller deviation from the optimal solution compared to the GA-based strategy. How-
ever, this observation is not directly transferable to probability of error comparison, as
we discuss in the sequel.

For simulations on probability of error, we consider Gaussian likelihoods, as in Section
5.5.1:

Lk(ξ|θ) =


1√
2π

exp
{
−(ξ + 1)2

2

}
, θ = 0

1√
2π

exp
{
−(ξ − 1)2

2

}
, θ = 1

The plots for error probability are based on 10000 Monte Carlo simulations. We first see
in Fig. 5.5 that the error probabilities of agents rapidly converge, supporting Theorem
5.2. Moreover, more central agents are better, i.e., wise, in tracking the state of nature
compared to less central agents.

The network average error probability of diffusion-GA is compared to the (i) central-
ized and ASL strategies in Fig. 5.6a and to (ii) diffusion-AA and consensus-GA in
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Figure 5.4: (a) Average asymptotic risk function and the mixing rate of the network, (b) Average
asymptotic time-adjusted prior risk and the Dobrushin coefficient of the transition model, (c)
Average risk over time for Diffusion-GA, Diffusion-AA and Consensus-GA.
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Figure 5.5: Probability of error across different agents over time.
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Figure 5.6: Average probability of error over network (a) for cHMM, dHMM and ASL, (b) for
diffusion-GA, diffusion-AA, and consensus-GA, over time, (c) in steady-state with respect to
different network connectivity.

Fig. 5.6b. It is seen that the diffusion-GA strategy (5.16)–(5.18) outperforms other
distributed solutions, but there is still a gap to the centralized solution which can be
removed completely only with fully-connected networks. In particular, diffusion-GA
has smaller error probability than diffusion-AA, as opposed to the risk function case. A
detailed comparison between these two algorithms can be an interesting future work.
Finally, Fig. 5.6c shows that the error probability decreases with increasing network
connectivity which highlights the benefit of cooperation.

5.7 Concluding Remarks

In this chapter, we proposed a distributed and online state estimation algorithm
for finite-state HMMs. Based on ergodicity of the underlying transition model, we
provided asymptotic bounds on the disagreement between the distributed strategy and
the optimal centralized strategy. We also examined the error probability in steady-state
and established convergence in distribution under Gaussian observation models.
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In addition to state estimation, the proposed algorithm can be used for the prediction
of incoming data, by averaging the data-state likelihood functions with respect to
the belief over states. More formally, for well-defined cases, agent k can estimate the
incoming data at time i by using

ξ̂k,i ≜ arg max
ξ

∑
θi

Lk(ξ|θi)ηk,i(θi). (5.85)

Furthermore, the algorithm can also be used for continuous state estimation. This
would require changing the summations over the states to integrals. These can be
numerically tractable under some conditions. For instance, the exponential family of
observation models can lead to closed-form formulas for the integral expressions, as
in [69].

Finally, the theoretical analysis in the current work utilizes the ergodicity of the transi-
tion model to establish performance bounds. A future challenge is to incorporate the
informativeness of the observations as well.

5.A Proof of Theorem 5.1

The risk function can be written as

Jk,i = EFiDKL(µ⋆i ||µk,i)

= EFi

[ ∑
θi∈Θ

µ⋆i (θi) log µ⋆i (θi)
µk,i(θi)

]
(a)= EFi

[ ∑
θi∈Θ

P(θ◦
i = θi|F i) log µ⋆i (θi)

µk,i(θi)

]
(b)= EFi

[
Eθ◦

i |Fi

(
log µ⋆i (θ◦

i )
µk,i(θ◦

i )

)]
= EFi,θ◦

i

[
log µ⋆i (θ◦

i )
µk,i(θ◦

i )

]
(c)= EFi,θ◦

i

[
logµ⋆i (θ◦

i )−
∑
ℓ∈Nk

aℓk logψℓ,i(θ◦
i )
]

+ EFi

[
log

∑
θ′

i∈Θ
exp

{∑
ℓ∈Nk

aℓk logψℓ,i(θ′
i)
}]

=
∑
ℓ∈Nk

aℓkEFi,θ◦
i

[
log µ⋆i (θ◦

i )
ψℓ,i(θ◦

i )

]
EFi

[
log

∑
θ′

i∈Θ
exp

{∑
ℓ∈Nk

aℓk logψℓ,i(θ′
i)
}]

(5.86)

where (a) follows from definition (5.4), (b) follows from the definition of conditional
expectation with respect to θ◦

i given Fi, and (c) follows from the combination step
(5.18). From the centralized update (5.5) and the adaptation step (5.17), we have:

log µ⋆i (θi)
ψℓ,i(θi)

= log L(ξi|θi)
(Lℓ(ξℓ,i|θi))γ

+ log η
⋆
i (θi)

ηℓ,i(θi)
− log m⋆

i (ξi)
mℓ,i(ξℓ,i)

. (5.87)
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where we are introducing the following marginal distribution for the new data given
the past data:

m⋆
i (ξi) ≜ P(ξi = ξi|F i−1) =

∑
θ′

i∈Θ
P(ξi = ξi,θ

◦
i = θ′

i|F i−1)

=
∑
θ′

i∈Θ
L(ξi|θ′

i)P(θ◦
i = θ′

i|F i−1)

=
∑
θ′

i∈Θ
L(ξi|θ′

i)η⋆i (θ′
i), (5.88)

as well as the agent-specific pseudo-marginal distribution:

mℓ,i(ξℓ,i) ≜
∑
θ′

i∈Θ
(Lℓ(ξℓ,i|θ′

i))γηℓ,i(θ′
i). (5.89)

Note that mℓ,i(ξℓ,i) is not a real distribution, i.e., it is not summing up to 1 because
γ ̸= 1, in general. To rewrite (5.86) using (5.87), we first observe that

∑
ℓ∈Nk

aℓkEξi,θ◦
i

[
log L(ξi|θ◦

i )
(Lℓ(ξℓ,i|θ◦

i ))γ
]

(a)= Eξi,θ◦
i

[ K∑
ℓ=1

logLℓ(ξℓ,i|θ◦
i )
]
−
∑
ℓ∈Nk

aℓkEξℓ,i,θ
◦
i

[
γ logLℓ(ξℓ,i|θ◦

i )
]

= Eξi,θ◦
i

[ K∑
ℓ=1

(1− γaℓk) logLℓ(ξℓ,i|θ◦
i )
]

(5.90)

where in (a) we used the independence from Assumption 5.1. Moreover, the divergence
of time-adjusted priors can be bounded as:

∑
ℓ∈Nk

aℓkEFi,θ◦
i

[
log η

⋆
i (θ◦

i )
ηℓ,i(θ◦

i )

]
=
∑
ℓ∈Nk

aℓkEFi−1,θ◦
i

[
Eξi|Fi−1,θ◦

i

(
log η

⋆
i (θ◦

i )
ηℓ,i(θ◦

i )

)]
(a)=

∑
ℓ∈Nk

aℓkEFi−1,θ◦
i

[
log η

⋆
i (θ◦

i )
ηℓ,i(θ◦

i )

]

=
∑
ℓ∈Nk

aℓkEFi−1

[
Eθ◦

i |Fi−1

(
log η

⋆
i (θ◦

i )
ηℓ,i(θ◦

i )

)]

=
∑
ℓ∈Nk

aℓkEFi−1

[ ∑
θi∈Θ

P(θ◦
i = θi|F i−1) log η

⋆
i (θi)

ηℓ,i(θi)

]
(b)=

∑
ℓ∈Nk

aℓkEFi−1

[ ∑
θi∈Θ

η⋆i (θi) log η
⋆
i (θi)

ηℓ,i(θi)

]

=
∑
ℓ∈Nk

aℓkEFi−1

[
DKL(η⋆i ||ηℓ,i)

]
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(c)
≤
∑
ℓ∈Nk

aℓkκ(T)EFi−1

[
DKL(µ⋆i−1||µℓ,i−1)

]
(5.91)

where (a) follows from the fact that the time-adjusted priors evaluated at the true
hypothesis are deterministic given the old history and the true hypothesis, (b) follows
from definition (5.6), and (c) follows from the strong data processing inequality.

Combining (5.86), (5.87), (5.90), and (5.91) yields:

Jk,i ≤ Eξi,θ◦
i

[ K∑
ℓ=1

(1− γaℓk) logLℓ(ξℓ,i|θ◦
i )
]

+
∑
ℓ∈Nk

aℓkκ(T)EFi−1

[
DKL(µ⋆i−1||µℓ,i−1)

]

+ EFi

[
log

∑
θ′

i∈Θ
exp

{∑
ℓ∈Nk

aℓk logψℓ,i(θ′
i)
}]
− EFi

[ ∑
ℓ∈Nk

aℓk log m⋆
i (ξi)

mℓ,i(ξℓ,i)

]
. (5.92)

Furthermore, the normalization term satisfies:

EFi

[
log

∑
θ′

i∈Θ
exp

{∑
ℓ∈Nk

aℓk logψℓ,i(θ′
i)
}]

= EFi

[
log

∑
θ′

i∈Θ

K∏
ℓ=1

exp
{
aℓk logψℓ,i(θ′

i)
}]

= EFi

[
log

∑
θ′

i∈Θ

K∏
ℓ=1

(ψℓ,i(θ′
i))aℓk

]

(a)= EFi

[
log

∑
θ′

i∈Θ

( K∏
ℓ=1

(Lℓ(ξℓ,i|θ′
i))γaℓk

K∏
ℓ=1

(ηℓ,i(θ′
i))aℓk

)]
− EFi

[ ∑
ℓ∈Nk

aℓk logmℓ,i(ξℓ,i)
]

(5.93)

where (a) follows from (5.17) and (5.89). Therefore, the last two terms in (5.92) can be
bounded as:

EFi

[
log

∑
θ′

i∈Θ
exp

{∑
ℓ∈Nk

aℓk logψℓ,i(θ′
i)
}]
− EFi

[ ∑
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aℓk log m⋆
i (ξi)

mℓ,i(ξℓ,i)

]

(a)= EFi

[
log

∑
θ′

i∈Θ

( K∏
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ℓ=1

(ηℓ,i(θ′
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)]

− EFi

[ ∑
ℓ∈Nk
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]
− EFi
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]
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log

∑
θ′

i∈Θ

( K∏
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logm⋆
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]
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(b)
≤ EFi
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(5.94)

where (a) follows from inserting (5.93), (b) follows from the weighted arithmetic-
geometric mean inequality, (c) follows from the fact that:

−EFi

 log m⋆
i (ξi)∑

θ′
i∈Θ

[∏K
ℓ=1(Lℓ(ξℓ,i|θ′

i))
∑K
ℓ=1 aℓkηℓ,i(θ′

i)
]
 = −EFi−1Eξi|Fi−1

 log m
⋆
i (ξi)

m†
i (ξi)


= −EFi−1DKL(m⋆

i (ξi)||m
†
i (ξi))

≤ 0 (5.95)

where we defined the probability density function:

m†
i (ξi) ≜

∑
θ′

i∈Θ

[ K∏
ℓ=1

(Lℓ(ξℓ,i|θ′
i))

K∑
ℓ=1

aℓkηℓ,i(θ′
i)
]

(5.96)

which can be verified to be a density as follows:

∫
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m†
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]
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=
K∑
ℓ=1

aℓk

[ ∑
θ′

i∈Θ
ηℓ,i(θ′
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=1

]

= 1 (5.97)

Let us introduce the following vectors of dimension H over all hypotheses for nota-
tional convenience:

ϑ+
i ≜ col

 log
( K∏
ℓ=1

(Lℓ(ξℓ,i|θi)γaℓk

K∑
ℓ=1

aℓkηℓ,i(θi)
)

H−1
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(5.98)

and

ϑ−
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 log
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Lℓ(ξℓ,i|θi)
K∑
ℓ=1

aℓkηℓ,i(θi)
)

H−1

θi=0

. (5.99)

Then, the bound in (5.94) can be expressed as

EFi

[
log

∑
θ′

i∈Θ

[ K∏
ℓ=1

(Lℓ(ξℓ,i|θ′
i))γaℓk

K∑
ℓ=1

aℓkηℓ,i(θ′
i)
]
− EFi

[
log

∑
θ′

i∈Θ

[ K∏
ℓ=1

Lℓ(ξℓ,i|θ′
i)

K∑
ℓ=1

aℓkηℓ,i(θ′
i)
]

= EFi

[
log

∑
θ′

i∈Θ
exp{ϑ+

i (θ′
i)}
]
− EFi

[
log

∑
θ′

i∈Θ
exp{ϑ−

i (θ′
i)}
]

(5.100)

Note that the difference of the vectors satisfy

ϑ+
i − ϑ

−
i = col

{ K∑
ℓ=1

(γaℓk − 1) logLℓ(ξℓ,i|θi)
}H−1

θi=0
. (5.101)

It is useful to introduce the LogSumExp function f :

f(υ) ≜ log
∑
θ∈Θ

exp{υ(θ)}, (5.102)

whose gradient is given by

∇υf(υ) ≜ col
{
∂f(υ)
∂υ(θ)

}
θ∈Θ

= col
{ exp{υ(θ)}∑

θ′ exp{υ(θ′)}

}
θ∈Θ

. (5.103)

By applying the mean-value theorem (MVT) to function f and taking the expectation
we get

EFi

[
log

∑
θ′

i∈Θ
exp{ϑ+

i (θ′
i)}
]
− EFi

[
log

∑
θ′

i∈Θ
exp{ϑ−

i (θ′
i)}
]
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(5.102)= EFi

[
f(ϑ+

i )
]
− EFi

[
f(ϑ−

i )
]

(MVT)= EFi

[
(∇υf(ϑi))T · (ϑ+

i − ϑ
−
i )
]

(5.101),(5.103)= EFi

[
col
{ exp{ϑi(θi)}∑

θ′
i
exp{ϑi(θ′

i)}

}T
· col

{ K∑
ℓ=1

(γaℓk − 1) logLℓ(ξℓ,i|θi)
}H−1

θi=0

]
(5.104)

for some ϑi lying on the line segment between ϑ−
i and ϑ+

i . The absolute value of
(5.104) can be bounded for any time instant i:∣∣∣∣∣∣EFi

col
{ exp{ϑi(θi)}∑

θ′
i
exp{ϑi(θ′

i)}

}T
· col

{ K∑
ℓ=1

(γaℓk − 1) logLℓ(ξℓ,i|θi)
}H−1

θi=0

∣∣∣∣∣∣
(a)
≤ EFi

∣∣∣∣∣∣col
{ exp{ϑi(θi)}∑

θ′
i
exp{ϑi(θ′

i)}

}T
· col

{ K∑
ℓ=1

(γaℓk − 1) logLℓ(ξℓ,i|θi)
}H−1

θi=0

∣∣∣∣∣∣
(b)
≤ Eξi

∥∥∥∥∥∥col
{ K∑
ℓ=1

(γaℓk − 1) logLℓ(ξℓ,i|θi)
}H−1

θi=0

∥∥∥∥∥∥
∞

(c)
≤
√
KγλEξi

∥∥∥∥col
{

logLℓ(ξℓ,i|θi)
}H−1

θi=0

∥∥∥∥
∞

(d)
≤
√
KγλCL (5.105)

where (a) follows from Jensen’s inequality, (b) follows from Hölder’s inequality and the
fact that ∥∥∥∥col

{ exp{ϑi(θi)}∑
θ′

i
exp{ϑi(θ′

i)}

}∥∥∥∥
1

= 1, (5.106)

and the last step (d) follows from Assumption 5.3. Step (c) follows from

K∑
ℓ=1
|γaℓk − 1| ≤ γ

∥∥∥∥A− 1
γ
1K1

T
K

∥∥∥∥
1

≤ γ
√
K

∥∥∥∥A− 1
γ
1K1

T
K

∥∥∥∥
2

(e)= γ
√
Kλ. (5.107)

Step (e) follows from the fact that for symmetric matrices, their ℓ2-induced norm is
equal to the spectral radius. Here, we also use the fact that since A is primitive and
doubly-stochastic, it has a unique eigenvalue at 1, and all other eigenvalues lie inside
the unit circle. The spectral radius of A − 1

γ1K1
T
K becomes the maximum absolute
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difference between the eigenvalues of A and 1
γ1K1

T
K , i.e., λ. Next, we combine (5.92),

(5.94), and (5.105) to obtain the bound on the risk function:

Jk,i ≤
K∑
ℓ=1

(1− γaℓk)Eξℓ,i,θ
◦
i

[
logLℓ(ξℓ,i|θ◦

i )
]

+ κ(T)
∑
ℓ∈Nk

aℓk EFi−1

[
DKL(µ⋆i−1||µℓ,i−1)

]
︸ ︷︷ ︸

Jℓ,i−1

+
√
KγλCL. (5.108)

Iterating this bound over time for all agents results in

Jk,i ≤
K∑
ℓ=1

(1− γaℓk)Eξℓ,i,θ
◦
i

[
logLℓ(ξℓ,i|θ◦

i )
]

+ κ(T)
∑
ℓ∈Nk

aℓk
∑
m∈Nℓ

(
(1− γamℓ)× Eξm,i−1,θ◦

i−1

[
logLm(ξm,i−1|θ◦

i−1)
])

+ κ(T)
∑
ℓ∈Nk

aℓkκ(T)
∑
m∈Nℓ

amℓJm,i−2 + κ(T)
∑
ℓ∈Nk

aℓk
√
KγλCL +

√
KγλCL

(a)
≤

K∑
ℓ=1

(1− γaℓk)Eξℓ,i,θ
◦
i

[
logLℓ(ξℓ,i|θ◦

i )
]

+ κ(T)
K∑
m=1

(
(1− γ[A2]mk)× Eξm,i−1,θ◦

i−1

[
logLm(ξm,i−1|θ◦

i−1)
])

+ κ(T)2
K∑
m=1

[A2]mkJm,i−2 + (1 + κ(T))
√
KγλCL

≤
i−1∑
j=0

(κ(T))j
K∑
ℓ=1

(1− γ[Aj+1]ℓk)× Eξℓ,i−j ,θ
◦
i−j

[
logLℓ(ξℓ,i−j |θ◦

i−j)
]

+
i−1∑
j=0

(κ(T))j
√
KγλCL + (κ(T))i

K∑
ℓ=1

[Ai]ℓkJℓ,0, (5.109)

where (a) follows from the fact that

∑
ℓ∈Nk

aℓk
∑
m∈Nℓ

(
(1− γamℓ)Eξm,i−1,θ◦

i−1

[
logLm(ξm,i−1|θ◦

i−1)
])

=
K∑
m=1

Eξm,i−1,θ◦
i−1

[
logLm(ξm,i−1|θ◦

i−1)
] K∑
ℓ=1

aℓk(1− γamℓ)

=
K∑
m=1

(1− γ[A2]mk)Eξm,i−1,θ◦
i−1

[
logLm(ξm,i−1|θ◦

i−1)
]
. (5.110)
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The first summation in the bound (5.109) can be bounded by the inequality∣∣∣∣∣∣
K∑
ℓ=1

(1− γ[Aj+1]ℓk)Eξℓ,i−j ,θ
◦
i−j

[
logLℓ(ξℓ,i−j |θ◦

i−j)
]∣∣∣∣∣∣

(a)
≤

K∑
ℓ=1

∣∣∣∣1− γ[Aj+1]ℓk
∣∣∣∣× ∣∣∣∣Eξℓ,i−j ,θ

◦
i−j

[
logLℓ(ξℓ,i−j |θ◦

i−j)
]∣∣∣∣

(b)
≤

K∑
ℓ=1

∣∣∣∣1− γ[Aj+1]ℓk
∣∣∣∣CL

(c)
≤
√
KγλjCL (5.111)

where λj > max{|1 − K
γ |, ρ

j+1
2 } is a positive constant, (a) follows from the triangle

inequality, (b) follows from Assumption 5.3, and (c) follows from (5.107) applied to
Aj+1 instead of A. Inserting (5.111) into (5.109) we can bound the risk function as:

Jk,i ≤
i−1∑
j=0

(κ(T))j
√
KγλjCL +

i−1∑
j=0

(κ(T))j
√
KγλCL + (κ(T))i

K∑
ℓ=1

[Ai]ℓkJℓ,0

(a)
≤ 2

i−1∑
j=0

(κ(T))j
√
KγλCL + (κ(T))i

K∑
ℓ=1

[Ai]ℓkJℓ,0

= 21− (κ(T))i

1− κ(T)
√
KγλCL + (κ(T))i

K∑
ℓ=1

[Ai]ℓkJℓ,0 (5.112)

where (a) follows from λj ≤ λ for all j. Using κ(T) < 1, the risk function is asymptoti-
cally bounded by

lim sup
i→∞

Jk,i ≤
2
√
KγλCL

1− κ(T) . (5.113)

This also means that

J̃k,i
(a)
≤ κ(T)Jk,i−1

=⇒ lim sup
i→∞

J̃k,i ≤ lim sup
i→∞

κ(T)Jk,i−1 ≤ κ(T)2
√
KγλCL

1− κ(T) (5.114)

where (a) follows from the strong-data processing inequality, for any time instant i.

5.B An Auxiliary Lemma

We present a general matrix result in the following lemma.
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Lemma 5.2 (Lower dimensional representation). Consider the K ×K doubly
stochastic and symmetric combination matrix A. Let r = rank(A). Then, for any
positive-definite diagonal covariance matrix Σ, there exists an r ×K matrix Q
such that:

• ATΣA = QTQ.

• For any vector v ∈ RK , there exists a unique vector vQ ∈ Rr that satisfies:

ATv = QTvQ. (5.115)

In other words, Q has full row rank and

vQ = (QT)†ATv, (5.116)

where (QT)† is the pseudo-inverse matrix

(QT)† ≜ (QQT)−1Q. (5.117)

Proof. Observe that

rank(A) (a)= rank(Σ1/2A)

= rank
(
(Σ1/2A)TΣ1/2A

)
= rank(ATΣA) = r (5.118)

where (a) follows from the fact that Σ is positive-definite and Σ1/2 is its square-root.
Moreover, since ATΣA is a real symmetric matrix, it can be decomposed as

ATΣA = UΛUT (5.119)

whereU isK×r with orthonormal columns and Λ is r×r with the positive eigenvalues
of ATΣA. Let Q = Λ1/2UT, which has full row rank. Then, ATΣA = QTQ. Note that
Q is not unique since we can modify it by any orthonormal transformation. It is also
obvious that, in terms of null (NULL) and range (RAN) spaces,

NULL(A) = NULL(Σ1/2A)
= NULL(ATΣA)
= NULL(QTQ)
= NULL(Q) (5.120)

and, hence, RAN(AT) = RAN(QT). It follows that for any vector v ∈ RK , there exists a
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vector vQ ∈ Rr such that

ATv = QTvQ. (5.121)

Multiplying both sides of (5.121) from the left by the pseudo-inverse of QT gives

vQ = (QT)†ATv. (5.122)

■

5.C Error Recursion for Diffusion

In light of Lemma 5.2 from Appendix 5.B, there exist vectors in Rr such that:

wi = AT(νi + χi)
= QT(νQ,i + χQ,i)
= QTwQ,i (5.123)

where

wQ,i ≜ (QT)†wi (5.124)

χQ,i ≜ (QT)†ATχi (5.125)

νQ,i ≜ (QT)†ATνi. (5.126)

Then, it follows from (5.70) and (5.126) that

νQ,i ∼ G
(

(QT)†ATβ(θ◦
i ), Ir×r

)
. (5.127)

where the covariance term follows from Lemma 5.2:

(QT)†ATΣAQ† = (QT)†(QTQ)Q† = Ir×r. (5.128)

Moreover, from the definition (5.59) of χi in terms ofwi−1 and (5.123) we can alterna-
tively write

χi = col

 log T(1|0) + T(1|1)exp{[QTwQ,i−1]ℓ}
T(0|0) + T(0|1)exp{[QTwQ,i−1]ℓ}


K

ℓ=1

. (5.129)

Now note from (5.124)–(5.126) that

wQ,i = νQ,i + χQ,i
(5.125)= νQ,i + (QT)†ATχi (5.130)
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which represents a transformation fromwQ,i−1 towQ,i directly in light of (5.129). This
indicates that we can work withwQ,i over time and transform it into the original vector
wi via (5.123). Repeating arguments similar to (5.61) and (5.62) and replacing wi by
wQ,i we obtain:

S
(θ)
Q,i(wQ, w

′
Q)dWQ ≜ P(wQ,i ∈ (wQ, wQ + dwQ)|θ◦

i = θ,wQ,i−1 = w′
Q)

S
(θ)
Q,i(wQ, w

′
Q) (a)= 1

(2π)r/2 exp
{
− 1

2∥wQ − ρ
(θ)
Q (w′

Q)∥2
}

(5.131)

where (a) follows from (5.127) and

ρ
(θ)
Q (w′

Q) ≜ (QT)†ATβ(θ◦
i ) + χQ,i

∣∣∣∣
θ◦

i =θ,wQ,i−1=w′
Q

. (5.132)

Observe that the density (5.131) forwQ,i exists in Rr, even ifwi does not admit a density
in RK . Furthermore, the effective temporal recursion becomes

fQ,i(θ, wQ) =
∑
θ′

T(θ|θ′)

∫
w′

Q

S
(θ)
Q,i(wQ, w

′
Q)fQ,i−1(θ′, w′

Q)dW ′
Q

 (5.133)

Using this information along with (5.123), which allows us to recover the agent-specific
log-belief ratiowk,i from the low-dimensional representationwQ,i, namely,

wk,i = qT
kwQ,i, (5.134)

where qk is the kth column of Q, we arrive at the following probability of error calcula-
tion for the diffusion HMM strategy:

pk,i =
∫
...

∫
qT

k
wQ≤0

fQ,i(1, wQ)dWQ +
∫
...

∫
qT

k
wQ>0

fQ,i(0, wQ)dWQ. (5.135)

5.D Proof of Theorem 5.2

First, observe from (5.59) that for a given transition model 0 < T(θ|θ′) < 1 ∀θ, θ′ ∈ Θ,χi
is bounded in norm. Moreover, the Gaussian mean β(θ◦

i ) is also bounded—see (5.71).
These in turn imply

∥ρ(θ)(w′)∥Σ−1 ≤ ρ̃ (5.136)

for some constant ρ̃ > 0. Let us define the spherical regionR ≜ {w : ∥w∥Σ−1 ≤ ρ̃}. For
any vector w that satisfies ∥w∥Σ−1 ≥ ρ̃, the projection to this region is given by ρ̃ w

∥w∥Σ−1
,

which can be verified by following the same steps for finding a vector’s projection on
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the ℓ2-ball. This implies that for any w outside the regionR, and for any w′:

min
wp∈R

∥w − wp∥Σ−1 =
∥∥∥∥w − ρ̃ w

∥w∥Σ−1

∥∥∥∥
Σ−1
≤ ∥w − ρ(θ)(w′)∥, (5.137)

since ρ(θ)(w′) ∈ R for any w′. We incorporate this result into (5.73) and observe that
for consensus we have

0 < S
(θ)
i (w,w′) ≤ S̃(w) (5.138)

for a Lebesgue integrable function S̃(w):

S̃(w) ≜



1√
(2π)Kdet(Σ)

, ∥w∥Σ−1 < ρ̃

exp
{
− 1

2

∥∥∥∥w − ρ̃ w
∥w∥Σ−1

∥∥∥∥2

Σ−1

}
√

(2π)Kdet(Σ)
, elsewhere

. (5.139)

Therefore, the kernel T(θ|θ′)S(θ)
i (w,w′) of the recursion (5.66) satisfies the conditions

required by [83, Theorem 5.7.4] and we conclude that:

lim
i→∞

∥∥∥fi − f∞
∥∥∥

TV
= 0. (5.140)

Consider time independent random variables {θ◦
∞,w∞}whose joint pdf is given by f∞.

The convergence in total variation (5.140) implies convergence in distribution (defined
in (5.75)), which means that {θ◦

i ,wi} converge to limiting random variables {θ◦
∞,w∞}

in distribution, i.e., {θ◦
i ,wi}

d
⇝ {θ◦

∞,w∞}. As a result, if we define for consensus
probability of error

pk,∞ =
∫ 0

wk=−∞
fk,∞(1, wk)dwk +

∫ ∞

wk=0
fk,∞(0, wk)dwk, (5.141)

where
fk,∞(θ, wk) =

∫
· · ·
∫
f∞(θ, w)dw1 · · · dwk−1dwk+1 · · · dwK , (5.142)

we obtain convergence to the steady-state error probability

lim
i→∞

pk,i = pk,∞. (5.143)

Similarly for diffusion.
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5.E Proof of Lemma 5.1

We verify that in general there is no network agreement by providing a counter-example.
Consider the following special case of the binary hypothesis testing problem described
in Sec. 5.5:

1
<latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit><latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit><latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit><latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit>

2
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Figure 5.7: Network of K = 3 agents.

The model: Consider the network of K = 3 agents in Fig. 5.7. Observe that the
network is strongly-connected. Moreover, the combination weights satisfy the doubly-
stochastic and symmetric matrix Assumption 5.2. Assume for simplicity of notation
that all agents have the same Gaussian observation models with σ2

k = σ2. The transi-
tion Markov chain is a binary symmetric channel with transition probability α = 0.5.

System equilibrium: It follows that for each agent k, regardless of the beliefµk,i−1(θi−1),

ηk,i(θi) =
∑

θi−1∈Θ
T(θi|θi−1)µk,i−1(θi−1)

= αµk,i−1(0) + αµk,i−1(1) = 0.5. (5.144)

This also means that, for each agent k,

log ηk,i(1)
ηk,i(0) = 0, (5.145)

and according to (5.56),

wk,i =
∑
ℓ∈Nk

aℓkγ log Lℓ(ξℓ,i|1)
Lℓ(ξℓ,i|0) . (5.146)

Moreover, since the likelihood functions of the agents are identical, the entries

νk,i ≜ γ log Lk(ξk,i|1)
Lk(ξk,i|0) (5.147)

of νi ∈ R3 are i.i.d. Gaussian random variables (with mean in (5.71) and variance in
(5.72)) given the true hypothesis. For the peripheral agent 1, it holds that

w1,i =
∑
ℓ∈Nk

aℓkνℓ,i = 2
3ν1,i + 1

3ν2,i, (5.148)
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and for the central agent 2,

w2,i = 1
3ν1,i + 1

3ν2,i + 1
3ν3,i. (5.149)

Observe that the log-belief ratiowk,i for each agent k is a Gaussian random variable,
with mean and variance parameters that do not depend on time. However, even though
w1,i andw2,i have the same mean, their variances and hence their distributions are
not the same. This proves that agents do not converge to the same random variable
and do not have the same steady-state error probability. In this particular example,
the central agent has less error probability due to smaller variance. For the consensus
case, a similar counter-example can be formed by allowing agents to have different
likelihoods.
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6 Policy Evaluation in Dec-POMDPs

6.1 Introduction1

In this chapter, we expand the dynamic state of nature studied in Chapter 5 to the
case in which agents not only update their beliefs but also take actions based on
these beliefs. Specifically, we consider the multi-agent reinforcement learning (MARL)
[89, 90] paradigm, which is useful for searching optimal policies in sequential decision
making tasks involving a group of agents.

Most works on MARL focus on the case where agents can directly observe the global
state of the environment. In many scenarios of interest, however, agents can only have
access to partial information about the state. The decentralized partially observable
Markov decision process (Dec-POMDP) framework [91] is applicable to these types
of situations. A majority of MARL works assume that Dec-POMDPs observe data that
are deterministic and known functions of the underlying state, which is not the case
in general. Consider, for example, robots that receive noisy observations from their
sensors. The underlying observation model is stochastic in this case.

Given the difficulty of forming beliefs in a decentralized manner, most MARL algo-
rithms [92–94] resort to model-free and end-to-end approaches where agents try to
simultaneously learn a policy and an embedding of the history that can replace the
beliefs (using, e.g., recurrent neural networks (RNNs)). Nevertheless, some empirical
results suggest that this model-free approach can be sub-optimal when the underlying
signals of the environment are too weak to train a model such as RNNs [95, 96]. Add
to this the fact that RNNs (or other similar machine learning models) correspond to
black boxes that provide little insight into the inner workings of the methodologies.
In other words, these algorithms lack interpretability, which is critical for the design
of trustworthy systems (see [8]). In addition, although end-to-end approaches have
shown remarkable performance empirically, they are still based on heuristics and lack

1The material in this chapter is based on [88].
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theoretical guarantees on their performance. Compared to modular approaches, they
are inefficient in terms of adaptability and generalization to similar tasks.

As an alternative, in this chapter, we examine belief-based strategies for MARL, and in
particular, study the multi-agent policy evaluation problem. We focus on solving the
problem of approximating the global Bayesian posterior in a distributed manner in a
Dec-POMDP context.

6.1.1 Contributions

• We consider a setting where agents only get partial observations from the under-
lying state of nature, as opposed to prior works on MARL over networks [97–105]
that assume agents have full state information. Moreover, as opposed to the
literature on decentralized stochastic control [106–109], in our setting, agents
need to learn their value functions from data. More specifically, in our framework,
agents only know their local observations, actions, and rewards and are allowed
to communicate with their immediate neighbors over a graph. In the proposed
strategy (Algorithm 6.2), agents exchange both their belief and value function
estimates.

• We show in Theorem 6.1 that by exchanging beliefs, agents keep a bounded
disagreement with the global posterior distribution, which requires fusing all
observations and actions. Also, exchanging value function parameters enables
agents to cluster around the network centroid for sufficiently small learning
rates (Theorem 6.2). Furthermore, we prove that the network centroid attains a
bounded difference from centralized training (Theorem 6.3).

• By means of simulations, we illustrate that agents attain a small mean-square
distance from the network centroid. Moreover, the squared Bellman error (SBE)
averaged over the network is shown to be comparable to the SBE of the central-
ized strategy.

6.2 Problem Setting

In this chapter, we are interested in multi-agent policy evaluation under partially
observable stochastic environments. For clarity of exposition and to motivate the
notation, we briefly review the procedure of single-agent policy evaluation under both
fully and partially observable states. Note that there are small differences of notation
in comparison to the other chapters of the thesis in order to be consistent with the
canonical notation of the reinforcement learning literature.
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6.2 Problem Setting

6.2.1 Fully-Observable Case

For modeling a learning agent under fully observable and dynamic environments, the
traditional setting is a finite Markov Decision Process (MDP). An MDP is defined by the
quintuple (S,A,T, r, γ), where S is a set of states with cardinality |S| = S,A is a set of
actions, T is a transition model where T(s′|a, s) denotes the probability of transitioning
from s ∈ S to s′ ∈ S when the agent executes action a ∈ A, r(s, a, s′) denotes the
reward the agent receives when it executes action a and the environment transitions
from state s to s′, and γ ∈ [0, 1) is a discount factor that determines the importance
given to immediate rewards (γ → 0) or the total reward (γ → 1).

The goal of policy evaluation is to learn the value function V π(s) of a target policy
π(a|s), where the value function is the expected return if the agent starts from state s
and follows policy π, namely,

V π(s) = E
[ ∞∑
i=0

γir(si,ai, si+1)|s0 = s

]
, (6.1)

where si is the state at time i and ai is the action chosen by the agent according
to the policy, ai ∼ π(a|si). In many applications, the state space is too large (or
infinite), which makes it impractical to keep track of the value function for all states.
Therefore, function approximations are used to reduce the dimension of the problem.
For instance, linear approximations, which are the focus of the theoretical analysis of
this work, correspond to using a parameterw◦ ∈ RM to approximate V π(s) ≈ ϕ(s)Tw◦,
where ϕ : S → RM is a pre-defined feature mapping for representing state s.

A standard stochastic approximation algorithm to learn w◦ from data is TD-learning
[8, 110] such as the TD(0) strategy [111] and variations thereof. If we denote the value
function estimate at w ∈ RM by V̂ (s, w) ≜ ϕ(s)Tw, then, under this strategy, the
agent first computes the TD-error δi at time i by using the observed transition tuple
(si, ri, si+1):

δi = ri + γV̂ (si+1,wi)− V̂ (si,wi), (6.2)

where ri ≜ r(si,ai, si+1) is the instantaneous reward at time i. Subsequently, the agent
uses this error to update the current parameter estimatewi to

wi+1 = wi + αδi∇wV̂ (si,wi), (6.3)

where α > 0 is the learning rate, and

∇wV̂ (si,wi) = ϕ(si) (6.4)

for the linear function approximation case. This algorithm can be viewed as a “stochas-
tic gradient algorithm” where the effective stochastic gradient is gi ≜ −δiϕ(si). In
this work, we consider an ℓ2-regularized version of the algorithm, which changes the
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update step (6.3) to

wi+1 = (1− 2ρα)wi + αδi∇wV̂ (si,wi), (6.5)

where ρ > 0 is a constant hyper-parameter. As opposed to supervised learning, reg-
ularization is rather under-explored in reinforcement learning, with notable excep-
tions in [112, 113]. However, recent work [114, 115] suggests that regularization can
increase generalization and sample-efficiency in function approximation with over-
parameterized models.

6.2.2 Partially-Observable Case

In many applications, the agent does not directly observe the state si. For instance, a
robot may receive noisy and partially informative observations from its sensors about
the environment. The observation ξi that the agent receives at time i is generally
assumed to be distributed according to some likelihood function linking it to the
unobservable state, say, ξi ∼ L(ξ|si), which is conditioned on si. In these scenarios,
the agent will need to estimate the latent state first from the observations. To do so, the
agent will need to learn a probability vector µi ∈M(S) over the set of states S, which
is called the belief vector [8, 116]. Here,M(S) denotes the S-dimensional probability
simplex, and the entry µi(s) ∈ [0, 1] of the belief vector quantifies the confidence the
agent has about state s being the true state at time i. The value of µi(s) corresponds
to the posterior probability of s conditioned on the action-observation history (a.k.a.
trajectory):

F i ≜ {ξi,ai−1, ξi−1, . . . }, (6.6)

which means
µi(s) ≜ P(si = s|F i). (6.7)

As already explained in the previous chapter in Sec. 5.2.1, this posterior satisfies the
following temporal recursion [8, 48, 116]:

µi(s) ∝ L(ξi|s)ηi(s), (6.8)

where ηi(s) is the time-adjusted prior defined by

ηi(s) ≜ P(si = s|Fa
i−1) =

∑
s′∈S

T(s|s′,ai−1)µi−1(s′). (6.9)

Here, Fa
i−1 is the collection of past observations and actions (i.e., the current observa-

tion ξi is excluded):
Fa
i−1 ≜ {ai−1, ξi−1,ai−2, . . . }. (6.10)

Note that F i = {ξi} ∪Fa
i−1. If beliefs are used as substitutes for hidden states, then

partially-observable MDPs (POMDPs) can be treated as continuous MDPs, since beliefs
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are continuous even if the number of states is finite. In this way, the policy evaluation
problem would correspond to evaluating V π(µ) where the value function is now de-
fined as the expected return when the agent starts from the belief state µ and follows
the policy π(a|µ), namely [8, 116]:

V π(µ) = E
[ ∞∑
i=0

γiri|µ0 = µ

]
. (6.11)

Observe that, in contrast to the fully-observable case, the agent now chooses action ai
according to the policy ai ∼ π(a|µi), which is conditioned on the belief vector.

Algorithm (6.2)–(6.5) can be adjusted for POMDPs by using the belief vectors (µi,ηi+1)
instead of the states (si, si+1). Thus, we let

δi = ri + γV̂ (ηi+1,wi)− V̂ (µi,wi), (6.12)

and
wi+1 = (1− 2ρα)wi + αδi∇wV̂ (µi,wi), (6.13)

where the approximation V̂ (µ,w) is computed by using the feature vectors ϕ(µ), now
dependent on µ, to evaluate V̂ (µ,w) ≜ ϕ(µ)Tw. Note that from now on ϕ :M(S)→
RM is a different feature mapping that represents µ instead of s, and agents’ goal is to
learn w◦ that satisfies V π(µ) ≈ ϕ (µ)T w◦.

Observe from (6.8)–(6.9) that in order for the agent to update the belief vectors (µi,ηi+1),
it needs to know the transition model T and the likelihood functions L(ξi|s) for each
state. However, the agent does not need to know the underlying reward model r. It can
use instantaneous reward samples ri to run the algorithm. In this sense, the algorithm
is a mixture of model-based and model-free reinforcement learning. Motivation for
this approach is at least two-fold.

First, in some applications, learning the transition and observation models from data
is inherently easier than learning the reward function. This is because the reward func-
tion can depend on some latent characteristics of the environment or some human
expert, which may be challenging to estimate. One example where this scenario can
arise is autonomous cars [117]. In this case, the observations from environmental
sensors and cameras are processed with a learned likelihood model such as a con-
volutional neural network. The transition dynamics of the car depends on various
parameters such as speed, acceleration, position, and incline, and can be modeled
based on physics laws and a mapping of the surroundings. However, learning a reward
function for this application is notoriously difficult, as it is challenging to cover all
possible situations [118].

Second, the agent can still run (6.12)–(6.13) even if beliefs are not formed through
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(6.8)–(6.9), but estimated by some other approach, as in [119–121].

6.3 Multi-agent Policy Evaluation

We now consider a setK ofK cooperative agents that aim to evaluate the average value
function under a joint policy π = {πk}Kk=1 that consists of individual policies πk. The
framework we consider is a decentralized POMDP (Dec-POMDP) [91], which is defined
by the sextuple (S,Ak,Ok,T, rk, γ). Here, the set of states S and the transition model T
are common to all agents, where the notation T(s|s′, a) now specifies the probability
that the environment transitions from s′ to s when the agents execute the joint action
a = {ak}Kk=1. The individual action ak of each agent k takes values from the setAk, and
rk(s, a, s′) is the local reward k gets when the agents execute the collection of actions
a and the environment transitions from s to s′. Note that this setting covers general
teamwork scenarios where the local reward of an individual agent can be dependent
on all actions, and not only on its own actions. Specifically, it covers the scenario where
all agents observe the same reward, i.e., rk(s, a, s′) = r(s, a, s′), ∀k ∈ K. Remember
that agents receive instantaneous rewards as they progress through the POMDP, and
they are not required to know the joint action a from all agents. Moreover,Ok is a set
of private observations. At each time instant i, agent k receives observation ξk,i ∈ Ok
emitted by state si, and assumed to be distributed according to the local marginal
likelihood Lk(ξk|si).

Similar to the single-agent case, Dec-POMDPs can in principal be treated as multi-
agent belief MDPs by replacing the hidden states with joint centralized beliefs defined
by [91, Chapter 2]

µi(s) ≜ P(si = s|F i) ∝ L(ξi|s)ηi(s). (6.14)

Here, F i denotes the history of all observations and past actions from across all agents
until time i, ξi ≜ {ξk,i}Kk=1 is now the aggregate of the observations from across the
network, and ai−1 is a tuple aggregating actions from all agents at time i− 1. Moreover,
under spatial independence, the joint likelihood L(ξi|s) appearing in (6.14) is given by

L(ξi|s) =
K∏
k=1

Lk(ξk,i|s). (6.15)

In a manner similar to the single-agent case, the belief ηi(s) is the time-adjusted prior
conditioned on Fa

i−1 (6.10):

ηi(s)≜P(si = s|Fa
i−1)=

∑
s′∈S

T(s|s′,ai−1)µi−1(s′). (6.16)

The goal of policy evaluation is to learn the team value function, which is the expected
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average reward of all agents starting from some belief state µ, i.e.,

V π(µ) = E
[ ∞∑
i=0

γi
( 1
K

K∑
k=1

rk,i

)∣∣∣∣µ0 = µ

]
, (6.17)

where rk,i denotes the instantaneous local reward agent k gets at time i.

There is one major inconvenience with this approach. In order to compute the joint
belief (6.14), it is necessary to fuse all observations and actions from across the agents
in a central location. This is possible in settings where there exists a fusion center.
However, many applications rely solely on localized processing. In the following, we
discuss and compare two strategies for multi-agent reinforcement learning under
partial observations: (i) a centralized strategy, (ii) and a fully decentralized strategy.

6.3.1 Centralized Strategy

In the fully centralized strategy, the state estimation and policy evaluation phases
are centralized and, hence, the setting is equivalent to a single-agent POMDP, al-
ready discussed in Sec. 6.2.2, using the joint likelihood L(ξi|s) and the average reward
ri ≜ K−1∑K

k=1 rk,i. The fusion center computes the joint belief (6.14), and agents
take actions based on this joint belief, i.e., ak,i ∼ πk(ak|µi). The fusion center then
computes the centralized TD-error:

δi = ri + γV̂ (ηi+1,wi)− V̂ (µi,wi), (6.18)

and updates the estimate to

wi+1 = (1− 2ρα)wi + αδi∇wV̂ (µi,wi). (6.19)

This construction is listed under Algorithm 6.1.

6.3.2 Decentralized Strategy

The centralized strategy is disadvantageous in the sense that (i) failure of the fusion
center results in failure of the system; (ii) there can be communication bottlenecks at
the fusion center; (iii) and agents can be spatially distributed to begin with. Therefore,
in this section, we propose a fully decentralized strategy for policy evaluation where
agents communicate with their immediate neighbors only. In this chapter, we denote
the combination matrix with C = [cℓk] and assume that C is symmetric and doubly-
stochastic.
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Algorithm 6.1 Centralized policy evaluation under POMDPs

1: set initial prior η0(s) > 0, ∀s ∈ S
2: initialize w0
3: while i ≥ 1 do
4: each agent k observes ξk,i
5: collect all observations ξi ≜ {ξk,i}Kk=1 and evaluate

µi(s) ∝ L(ξi|s)ηi(s) (6.20)

6: for each agent k = 1, 2, . . . ,K do
7: take action ak,i ∼ πk(ak|µi)
8: get reward rk,i = rk(si,ai, si+1)
9: end for

10: then, evolve according to:

ηi+1(s) =
∑
s′∈S

T(s|s′,ai)µi(s′) (6.21)

11: average the rewards ri = 1
K

∑K
k=1 rk,i

12: update the model:

δi = ri + γV̂ (ηi+1,wi)− V̂ (µi,wi) (6.22)

wi+1 = (1− 2ρα)wi + αδi∇wV̂ (µi,wi) (6.23)

13: i← i+ 1
14: end while

Local Belief Formation

In the fully decentralized strategy, the agents cannot form the joint belief (6.14) since
they do not have access to the observations and actions of all other agents. They,
however, can construct local beliefs. To do so, we will extend the diffusion HMM
strategy (DHS) from previous chapter (Algorithm 5.1), originally designed for hidden
Markov models, to the current POMDP setting.

Recall from previous chapter that In DHS (Algorithm 5.1), the global belief vectors
{µi,ηi} are replaced by local belief vectors {µk,i,ηk,i}, and the latter are updated by
using local observations and by relying solely on interactions with the immediate
neighbors. The original DHS algorithm is designed for actionless partially observable
Markov chains, and each agent can use the same global transition model. However,
in POMDPs, transition of the global state depends on the joint action, and the agents
cannot perform a centralized time-adjustment step as in (6.21) since they do not know
the actions of all agents in the network.

Therefore, one strategy is to use a transition model that is obtained by marginalizing
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over actions that are unknown to agent k. More specifically, let aNk
∈ ANk

denote a
tuple of actions taken by the set of neighbors of agent k (which we are denoting byNk).
These actions can be assumed to be known by agent k if, for instance, agents share
their actions with their neighbors. Let acNk

∈ AcNk
denote the remaining actions by

all other agents in the network, so that a = aNk
∪ acNk

. Then, each agent can use the
following local transition model approximation:

Tπk(s|s′, aNk
) ∝

∑
ac

Nk
∈Ac

Nk

T(s|s′, aNk
, acNk

)π(aNk
, acNk

|s′) (6.24)

in lieu of T(s|s′, a), to time-adjust its local belief:

ηk,i(s) =
∑
s′∈S

Tπk(s|s′,aNk,i−1)µk,i−1(s′), (6.25)

Here,aNk,i−1 is the tuple of actions taken by the neighbors of agent k at time instant i−1.
Moreover, in (6.24), the notation π(aNk

, acNk
|s′) represents the joint action probability:

π(aNk
, acNk

|s′) =
K∏
ℓ=1

πℓ(aℓ|s′), (6.26)

where the notation π(a|s) is now a shorthand for π(a|µ) when

µ = [0 . . . 1 . . . 0]T, (6.27)

i.e., when the belief attains value 1 for state s and is 0 otherwise. Note that this con-
struction leads to a richer scenario compared to the previous chapter, with transition
models that are different across the agents.

The rest of the algorithm is the same as the DHS strategy. Following (6.25), and based
on the personal observation ξk,i, each agent k forms an intermediate belief using a
β-scaled Bayesian update of the form:

ψk,i(s) ∝ (Lk(ξk,i|s))βηk,i(s), (6.28)

where β > 0. Next, agents in the neighborhood of k share their intermediate be-
liefs, which allows agent k to update its belief using the weighted geometric average
expression:

µk,i(s) ∝
∏
ℓ∈Nk

(
ψℓ,i(s)

)cℓk
. (6.29)

This procedure of repeated updating and exchanging of beliefs allows information to
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diffuse over the network.

Diffusion Policy Evaluation

In the fully decentralized strategy, the local belief formation strategy is used during both
training and execution phases. Namely, the target value function in (6.17) represents
the average return agents get when they execute the policy π with their local beliefs
formed via the DHS strategy. Moreover, since the policy evaluation is also decentralized,
during the training phase, they again need to use DHS to approximate the global belief
state µ on top of the function approximation. More specifically, using its local belief
vectors, each agent k computes a local TD error:

δk,i = rk,i + γV̂ (ηk,i+1,wk,i)− V̂ (µk,i,wk,i), (6.30)

where rk,i = rk(si,ai, si+1) is also a function of the local beliefs since each agent
k now executes the action ak,i ∼ πk(ak|µk,i). Subsequently, each agent k forms an
intermediate parameter estimate denoted by

zk,i+1 = (1− 2ρα)wk,i + αδk,i∇wV̂ (µk,i,wk,i). (6.31)

After receiving the intermediate estimates from its neighbors, agent k updateswk,i to

wk,i+1 =
∑
ℓ∈Nk

cℓkzℓ,i+1. (6.32)

The local adaptation step (6.31) followed by the combination step (6.32) are reminis-
cent of diffusion strategies for distributed learning [7,8]. Observe that there are actually
two combination steps involved in diffusion policy evaluation: the belief combination
(6.29) with geometric averaging (GA), and the parameter combination (6.32) with arith-
metic averaging (AA). The listing of the proposed diffusion policy evaluation strategy
for POMDPs appears in Algorithm 6.2.

Algorithm 6.2 has the following advantages:

• Decentralized information structure: The algorithm is designed to be fully
decentralized, with each agent only having access to its own private data, such as
observations and rewards, without the need to share this information with other
agents. Importantly, agents do not require knowledge of the joint distribution
of observations or the network topology. They only know their own marginal
likelihood function, and their actions are only known by (or transmitted to) their
immediate neighbors. If agents happen to know their own marginal transition
models, they do not need to know the policies of other agents or the global
transition model. However, if the application requires them to approximate it
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Algorithm 6.2 Diffusion policy evaluation under POMDPs

1: set initial priors ηk,0(s) > 0, ∀s ∈ S and ∀k ∈ K
2: choose β > 0
3: initialize wk,0 for ∀k ∈ K
4: while i ≥ 0 do
5: for each agent k = 1, 2, . . . ,K do
6: receive personal observation ξk,i and adapt for each state s ∈ S:

ψk,i(s) ∝ (Lk(ξk,i|s))βηk,i(s) (6.33)

µk,i(s) ∝
∏
ℓ∈Nk

(
ψℓ,i(s)

)cℓk
(6.34)

7: take action ak,i ∼ πk(ak|µk,i)
8: get reward rk,i = rk(si,ai, si+1)
9: end for

10: for each agent k = 1, 2, . . . ,K do
11: compute Tπk(s|s′,aNk,i) using (6.24), and

ηk,i+1(s) =
∑
s′∈S

Tπk(s|s′,aNk,i)µk,i(s
′) (6.35)

12: end for
13: for each agent k = 1, 2, . . . ,K do

δk,i = rk,i + γV̂ (ηk,i+1,wk,i)− V̂ (µk,i,wk,i) (6.36)

zk,i+1 = (1− 2ρα)wk,i + αδk,i∇wV̂ (µk,i,wk,i) (6.37)

14: end for
15: for each agent k = 1, 2, . . . ,K combine

wk,i+1 =
∑
ℓ∈Nk

cℓkzℓ,i+1 (6.38)

16: end for
17: i← i+ 1
18: end while
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themselves, they require knowledge of the other policies and the global transition
model.

• Privacy: The algorithm is also advantageous in terms of privacy since (i) com-
municating beliefs allows information diffusion without explicitly sharing raw
observational data, and (ii) exchanging value parameters allows agents to learn
the cumulative reward across network without explicitly sharing local rewards.

• Complexity: (i) The memory requirement is constant over time, with each agent
only needing to store its value function parameter estimate (M-dimensional) and
local belief (S-dimensional), as well as the necessary model functions. (ii) The
communication requirement is also manageable, with each agent communicat-
ing only with its immediate neighbors through belief and parameter sharing. The
communication load is not affected by the network size, making our algorithm
scalable and avoiding communication bottlenecks. (iii) The computational com-
plexity depends on whether the application at hand allows agents to have access
to the local transition model. If this is the case, then the computational com-
plexity is equivalent to the single-agent Bayesian filtering case, which is O(S2).
The combination steps add only linear additional complexity O(S) with fixed
neighborhood size. However, if agents need to approximate the transition model
themselves, the computational complexity increases with the network size, and
becomes O(KS2). This is due to the need to average over non-neighbors’ actions
in (6.24), whose size grows with the network size in general. Compared to alter-
native approaches such as relaying raw data, incremental approaches [122], or
Bayesian belief forming [20], our algorithm is much lighter in terms of complex-
ity. Relaying raw data, for example, would result in an exponential increase of
memory and communication overload at each hop, making it highly impractical.
The incremental approach of relaying over a cyclic path (which is NP-hard to
find [123]) that visits each agent once would reduce the overload. However, it is
not robust against failures and not scalable, making it impractical for a decen-
tralized setting. The Bayesian belief forming strategy requires knowledge of the
network topology and other agents’ functions, and known to be NP-hard, even in
the much simpler case of fixed state and no action setting [124].

6.4 Theoretical Results

In this section, we analyze the performance of the decentralized strategy in Algo-
rithm 6.2. In particular, we first show in Sec. 6.4.2 that the value function parameters
{wk,i} of the agents cluster around the network centroid. Then, in Sec. 6.4.3, we show
that this network centroid has a bounded difference from the parameter of a baseline
strategy (which will be presented in Algorithm 6.3). Our analysis relies on bounding
the disagreement between the joint centralized belief µi and the local estimate µk,i,
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which is presented next.

6.4.1 Belief Disagreement

In a manner similar to previous chapter, we introduce the following risk functions
in order to assess the disagreement between the local beliefs formed via (6.33)–(6.35)
with the joint centralized beliefs formed via (6.20)–(6.21):

Jk,i ≜ EFiDKL(µi||µk,i), (6.39)

and

J̃k,i ≜ EFa
i−1
DKL(ηi||ηk,i). (6.40)

The risks in (6.39) and (6.40) measure the disagreement after and before the joint
observation ξi, respectively. In comparison to the previous chapter, in the current
chapter, each agent uses a local approximation for the global transition model based
on (6.24). Therefore, we need to make some non-trivial adjustments to the belief
disagreement analysis. We begin with adjusting the assumptions from previous chapter
to our model.

Modeling Conditions

• Likelihood functions: We assume that∣∣∣ logLk(ξ|s)
∣∣∣ ≤ B (6.41)

over its support for each state s ∈ S and agent k ∈ K.

• Transition model: The Markov chain induced by any joint action a ∈ A is
irreducible and aperiodic. Since the number of states is finite, this assumption
implies that the transition model T(s|s′, a) is ergodic [10, Chapter 2]. As explained
in previous chapter, we focus on the important class of geometrically ergodic
models, which additionally satisfy the relation κ(Ta) ≤ κ(T) for some constant
κ(T) < 1. Here, κ(Ta) is the Dobrushin coefficient [48, Chapter 2] defined by:

κ(Ta) ≜ sup
s′,s′′∈S

1
2
∑
s∈S

∣∣∣T ass′ − T ass′′

∣∣∣, (6.42)

where T ass′ ≜ T(s|s′, a) is a generic entry of the S × S transition matrix T a. Due
to space limitations, we refer the reader to [48, Chapter 2] for a comprehensive
discussion on the Dobrushin coefficient κ(Ta). In short, κ(Ta) quantifies how
fast the transition model forgets its initial conditions. Namely, as κ(Ta) → 0,

143



Policy Evaluation in Dec-POMDPs

past conditions are forgotten faster. Instances of geometrically ergodic transition
models include transition matrices with all positive elements, or that satisfy the
minorization condition in [48, Theorem 2.7.4]. In addition to this condition from
Chapter 5, we have an additional assumption on the transition model to regulate
the disagreement stemming from the local transition model estimates:

Assumption 6.1 (Transition model disagreement). For each agent k, con-
sider the n-hop neighbors set Nkn and its complement N c

kn . Here, Nkn is
the set of agents that have at most n-hop distance to agent k. We define
the transition model approximation that uses n-hop neighbors’ actions as
follows:

Tπk(s|s′, aNkn ) ∝
∑

ac
Nkn

∈Ac
Nkn

T(s|s′, aNkn , a
c
Nkn )π(aNkn , a

c
Nkn |s′). (6.43)

We assume that

DKL

Tπk(s∣∣∣s′, aNkn

)∣∣∣∣∣∣Tπk(s∣∣∣s′, aN
kn+1

) <∞, (6.44)

which ensures that transition model approximations induced from n-hop
and (n + 1)-hop neighbors’ actions share the same support. Moreover, we
assume that over the shared support,

∣∣∣∣∣∣ log
Tπk
(
s|s′, aNkn

)
Tπk
(
s|s′, aN

kn+1

)
∣∣∣∣∣∣ ≤ τ. (6.45)

for n ≥ 1.

This assumption basically makes sure that the increase in the error of the transi-
tion model approximation of agents due to lack of information about actions is
bounded at each geodesic distance increase to that agent.

Difference with Centralized Strategy

The following result provides upper bounds on the disagreement measures in (6.39)–
(6.40).
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Theorem 6.1 (Bounds on belief disagreement). For each agent k, the belief dis-
agreement risks (6.39) and (6.40) get bounded with a linear rate of κ(T), namely,
as i→∞,

Jk,i ≤
2
√
KβλB

1− κ(T) + (K − dmin) τ
1− κ(T) (6.46)

and

J̃k,i ≤
2κ(T)

√
KβλB

1− κ(T) + (K − dmin) τ
1− κ(T) (6.47)

where dmin is the minimum degree over the graph, i.e., the minimum number of
neighbors over the network, and λ ≜ max{|1− K

β |, λ2}where λ2 < 1 is the mixing
rate (second largest modulus eigenvalue) of C .

Proof. See Appendix 6.A. ■

In Theorem 6.1, the first terms in both bounds are equivalent to the bounds obtained
in Theorem 5.1. However, the terms proportional to (K − dmin)τ are new, and they
arise from the fact that agents do not observe the joint actions and hence only have
a local estimate of the transition model. Nevertheless, the bounds get smaller with
increasing network connectivity, i.e., as λ2 → 0 and dmin → K, which shows the
benefit of cooperation. In particular, if β = K and the network is fully connected
(λ2 = 0, dmin = K), then the bounds are equal to 0. In other words, local beliefs match
the centralized belief in this situation. It is important to note that the linear term
(K − dmin) represents a worst-case bound that holds true for any strongly connected
network topology.

For instance, in a scenario where each agent has N > 1 neighbors, it is straightforward
to modify the proof and show that these linear terms will instead be logarithmic, i.e.,
proportional to logK/ logN .

We use Theorem 6.1 in the performance analysis of the diffusion policy evaluation. To
that regard, we first present the following consequence of Theorem 6.1, which provides
a bound in terms of disagreement norms.
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Corollary 6.1 (Bounds on disagreement norms). Theorem 6.1 implies that, as
i→∞,

E
∥∥∥µi − µk,i∥∥∥ ≤ BTV (6.48)

and
E
∥∥∥ηi − ηk,i∥∥∥ ≤ B̃TV, (6.49)

where we introduce the constants

BTV ≜ 2

1− exp
{
− 2
√
KβλB + (K − dmin) τ

1− κ(T)

}1/2

(6.50)

and

B̃TV ≜ 2

1− exp
{
− 2κ(T)

√
KβλB + (K − dmin)τ

1− κ(T)

}1/2

(6.51)

Proof. See Appendix 6.B. ■

6.4.2 Network Disagreement

In this section, we study the variation of agent parameters from the network centroid.
To that end, let us incorporate the linear approximation V̂ (µ,w) = ϕ(µ)Tw into the
TD-error expression (6.36) to obtain the following relation:

δk,i = rk,i + γϕ(ηk,i+1)Twk,i − ϕ(µk,i)Twk,i. (6.52)

Since∇wV̂ (µ,w) = ϕ(µ) for the linear case, it follows that

zk,i+1 =
(

(1− 2ρα)I − αHk,i

)
wk,i + αdk,i, (6.53)

where
Hk,i ≜ ϕ(µk,i)ϕ(µk,i)T − γϕ(µk,i)ϕ(ηk,i+1)T, (6.54)

and
dk,i ≜ rk,iϕ(µk,i). (6.55)

To proceed, we introduce the following regularity assumption on the feature vector.
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Assumption 6.2 (Feature vector). The feature mapping ϕ(µ) is bounded and
Lipschitz continuous in the domain of the S-dimensional probability simplex.
Namely, for any vectors µ1, µ2 ∈M(S),

∥ϕ(µ1)− ϕ(µ2)∥ ≤ Lϕ∥µ1 − µ2∥, ∥ϕ(µ1)∥ ≤ Bϕ. (6.56)

Lemma 6.1 (Belief feature difference). For each agent k ∈ K, the belief feature
matrixHk,i in (6.54) has bounded expected difference in relation to the centralized
belief feature matrixH⋆

i , defined below, i.e.,

E∥Hk,i −H⋆
i ∥ ≤ 2BϕLϕBTV(1 + γ), (6.57)

where

H⋆
i ≜ ϕ(µi)ϕ(µi)T − γϕ(µi)ϕ(ηi+1)T. (6.58)

Proof. See Appendix 6.C. ■

We further assume that all rewards are non-negative and uniformly bounded, i.e.,
0 ≤ rk,i ≤ Rmax for each agent k ∈ K, and all time instants i. To study the network
disagreement, we define the network centroid as

wc,i ≜
1
K

K∑
k=1

wk,i, (6.59)

which is an average of the parameters of all agents. The following result shows that the
agents cluster around this network centroid after sufficient iterations.

Theorem 6.2 (Network agreement). The average distance to the network centroid
is bounded for ρ > γBϕLϕ/

√
2 after sufficient number of iterations. In particular,

if ρ ≥ 0.75γBϕLϕ, then

1
K

K∑
k=1

E∥wk,i −wc,i∥ ≤
αλ2ϵ

(1− λ2) +O(α2) (6.60)

where

ϵ ≜ RmaxBϕ

(2BTV(1 + γ)
0.08γ + 1

)
. (6.61)

Proof. See Appendix 6.D. ■
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Theorem 6.2 states that the parameter estimates by the agents cluster around the
network centroid within mean ℓ2-distance on the order ofO(αλ2) in the limit as i→∞.
This result confirms that agents can get arbitrarily close to each other by setting the
learning rate α sufficiently small. Besides, dense networks have in general small λ2,
which results in a small disagreement within the network.

6.4.3 Performance of Diffusion Policy Evaluation

We can therefore use the network centroid as a proxy for all agents to show that the
disagreement between the fully decentralized strategy of Alg. 6.2 and a baseline strategy
that requires a central processor during training is bounded. We start by describing
this baseline strategy and explain why it is a more suitable baseline compared to using
the fully centralized strategy Alg. 6.1.

In some applications, even though agents are supposed to work in a decentralized
fashion once implemented in the field, they can nevertheless rely on central processing
during the training phase in order to learn the best policy. In the literature, this
paradigm is referred to as centralized training for decentralized execution [94, 125].
For our problem, the crucial point is that during training the centralized processor
can form beliefs based on all observations, but it should keep in mind that agents
will execute their actions based on local beliefs once implemented. Therefore, in the
baseline strategy, actions and rewards are based on local beliefs as in (6.33)–(6.35),
whereas parameter updates are based on the centralized posterior as in (6.20)–(6.21).
Algorithm 6.3 lists this baseline procedure. Notice that the algorithm consists of
both local belief construction (see (6.62), (6.63), and (6.65)) and centralized belief
construction (see (6.64) and (6.66)). The former is used for action execution ak,i ∼
πk(ak|µk,i), while the latter is used for value function parameter updates in (6.67)–
(6.68).

In the fully centralized strategy of Alg. 6.1, the actions by the agents and the subsequent
rewards are based on the centralized belief. Therefore, the target value function that
Alg. 6.1 aims to learn corresponds to the average cumulative reward obtained under
centralized execution. In comparison, the target value functions that Algs. 6.2 and 6.3
try to learn are the same and they correspond to the average cumulative reward under
decentralized execution. While trying to learn the same parameter w◦, the baseline
strategy can utilize centralized processing, but the diffusion strategy is fully decen-
tralized. Nonetheless, the following result illustrates that the expected disagreement
between the baseline strategy and the fully decentralized strategy remains bounded.
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Algorithm 6.3 Centralized evaluation for decentralized execution

1: set initial priors ηk,0(s) > 0, η0(s) > 0, for ∀s ∈ S and ∀k ∈ K
2: choose β > 0
3: initialize w⋆0
4: while i ≥ 0 do
5: each agent k observes ξk,i
6: for each agent k = 1, 2, . . . ,K and s ∈ S adapt and combine

ψk,i(s) ∝ (Lk(ξk,i|s))βηk,i(s) (6.62)

µk,i(s) ∝
∏
ℓ∈Nk

(
ψℓ,i(s)

)aℓk
(6.63)

7: end for
8: to form centralized belief with joint observation ξi ≜ {ξk,i}Kk=1, adapt

µi(s) ∝ L(ξi|s)ηi(s) (6.64)

9: for each agent k = 1, 2, . . . ,K do
10: take action ak,i ∼ πk(ak|µk,i)
11: get reward rk,i = rk(si,ai, si+1)
12: end for
13: average the rewards r⋆i = 1

K

∑K
k=1 rk,i

14: for each agent k = 1, 2, . . . ,K evolve
15: Compute Tπk(s|s′,aNk,i) using (6.24), and

ηk,i+1(s) =
∑
s′∈S

Tπk(s|s′,aNk,i)µk,i(s
′) (6.65)

16: end for
17: evolve the centralized belief

ηi+1(s) =
∑
s′∈S

T(s|s′,ai)µi(s′) (6.66)

18: update value function parameter

δ⋆i = r⋆i + γV̂ (ηi+1,w
⋆
i )− V̂ (µi,w⋆

i ) (6.67)

w⋆
i+1 = (1− 2ρα)w⋆

i + αδ⋆i∇wV̂ (µi,w⋆
i ) (6.68)

19: i← i+ 1
20: end while
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Theorem 6.3 (Disagreement with the baseline solution). The expected distance
between the baseline strategy and the network centroid is bounded after sufficient
iterations for ρ > γBϕLϕ/

√
2. In particular, if ρ ≥ 0.75γBϕLϕ, then

E∥w⋆
i −wc,i∥ ≤

BTVRmaxϵ
′

0.08γBϕLϕ
(6.69)

after i ≥ i0 = o (1/(αγBϕLϕ)) iterations, where ϵ′ > 0 is a constant defined by

ϵ′ ≜
2Bϕ(1 + γ)

0.08γ + Lϕ. (6.70)

Proof. See Appendix 6.E. ■

Theorem 6.3 implies that the disagreement between the network centroid, around
which agents cluster, and the baseline strategy is on the order of BTV. This means that
if the local beliefs are similar to the centralized belief, agents get closer to the baseline
parameter. In this regard, from the definition (6.50) for BTV, it can be observed that
BTV gets smaller with increasing network connectivity (i.e., decreasing λ2), as β → K.
In fact, it is equal to 0 for fully-connected networks with the choice of β = K and
cℓk = 1/K. Therefore, by changing β and cℓk, the fully decentralized strategy can
match the value function estimates of a centralized training strategy that can gather
all observations and actions in a fusion center. In the next section, by means of
numerical simulations, we further compare the value function estimate accuracies of
all Algorithms 6.1, 6.2 and 6.3 by using squared Bellman error (SBE).

6.5 Numerical Simulations

For numerical simulations, we consider a multi-agent target localization application.
The implementation is available online2. We use a set of K = 8 agents and a moving
target in a 10 × 10 two-dimensional grid world environment. The locations of the
agents are fixed and their coordinates are randomly assigned at the beginning of the
simulation. The goal of the agents is to cooperatively evaluate a given policy for hitting
the target. Agents cannot observe the location (i.e., state) of the target accurately, but
instead receive noisy observations based on how far they are from the real location of
the target. The target is moving according to some pre-defined transition model that
takes the actions (i.e., hits) of agents into account. Specifically, the target is trying to
evade the hits of agents.

A possible scenario for this setting is a network of sensors and an intruder (e.g., a

2github.com/asl-epfl/DecPOMDP_Policy_Evaluation_w-Belief_Sharing
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6.5 Numerical Simulations

(a) Initial positions at the beginning of an
iteration.

(b) Agents receive noisy observations and
incorporate them into their beliefs.

(c) Agents exchange beliefs with their im-
mediate neighbors.

(d) Agents take actions based on the beliefs.
The target relocates based on the actions.

(e) Agents update and exchange value func-
tion parameters.

(f) Image credit for agent, target, and ac-
tion: freepik.com

Figure 6.1: Experimental scenario. For visual purposes, the procedure is shown for only one
agent. In fact, all agents execute the same procedure simultaneously.
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spy drone) — see Fig. 6.1. The sensors try to localize the intruder based on noisy
measurements and belief exchanges. Moreover, in order to disrupt the communication
between the intruder and its owner, each sensor sends a narrow sector jamming beam
towards its target location estimate. However, the intruder is capable of detecting
energy abnormalities and determines its next location by favoring distant locations
from the jamming signals. We now describe the setting in more detail.

(a) Communication topology. (b) Agreement error over time.

(c) SBE over time (running window of size 20)
for CC (Alg. 6.1), Diffusion (Alg. 6.2), CD

(Alg. 6.3).

Figure 6.2: Graph underlying the experimental scenario and the evolution of errors over time.

Combination matrix: The entries of the combination matrix are set such that they are
inversely proportional to the ℓ1-distance between the agents. That is to say, the further
the agents are from each other, the smaller the value of the weight that is assigned to
the edge connecting them. Weights smaller than some threshold are set to 0, which
implies that agents that are too far from each other do not need to communicate. The
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6.5 Numerical Simulations

initial position

ℓ1-
distance

≤ 4 > 4

average location

of agents’ hits

< 4 10 5

≥ 4 100 50

Table 6.1: The table of scores used in the transition model. Each candidate state for next state
(location) of the target gets a score based on the initial position of the target and the average
action of agents.

resulting communication topology graph is illustrated in Fig. 6.2a.

Transition model: The target is moving between cells in a grid (i.e., states) randomly.
The probability of a cell being the next location of the target depends on the current
location of the target and the location of the agents’ hits. Namely, each state in the
grid is assigned a score based on its ℓ1-distance to the current location of the target
and to the average location of the agents’ hits — see Table 6.1. For example, observe
from Table 6.1 that the cells that are in the proximity of the target’s current location
and also far away from the agents’ strikes are given the highest score. These scores are
normalized to yield a probabilistic transition kernel.

Likelihood function: Agents cannot observe where the target is. They can only receive
noisy observations. Each agent gets a more accurate observation of the target’s posi-
tion if the target is in close proximity to the agent. Otherwise, the larger the distance
between the agent and the target, the higher the noise level. Depending on how close
the target is to the agent, and in order to construct the likelihood function, we first
assign scores to each cell in the grid that reflect how probable it is to find the target in
that cell — see Table 6.2. Following that, the scores are normalized in order to yield a
distribution function. For instance, if the target lies at an ℓ1-distance that is less than
3 grid squares from the location of the agent, the actual position of the target gets a
likelihood score of 400, cells within an ℓ1 distance of 2 grid squares from the agent get a
likelihood score of 200, and cells within an ℓ1 distance of 4 grid squares from the agents
get a likelihood score of 30.

Reward function: The reward function in the environment is such that an agent
receives a reward of 1 if the agent is able to hit the position of the target. The agent
also receives a reward of 0.2 if the ℓ1-distance between the predicted location and the
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real location of target

ℓ1-
distance

=
0

<
3

<
5

<
7

<
9

≥
9

location

of

agent

< 3 400 200 30 1 1 1

≤ 6 200 180 100 1 1 1

> 6 25 25 25 25 4 1

Table 6.2: The table of scores used in the likelihood function model. Each state, when observed,
gets a score that determines the likelihood of the presence of the target within the state, based
on the position of the target and the average action of agents.

actual location of the target is less than 3 grid units. Otherwise, it gets 0 reward. Agents
do not know the reward model, and use the instantaneous rewards instead.

Policy: We fix the policy that the agents evaluate as the maximum a-posteriori policy.
Namely, agents detect (hit) a location if it corresponds to the maximum entry in their
belief vector.

We use the belief vectors as the features directly, i.e., ϕ is an identity transformation.
We set α = 0.1, ρ = 0.0001, and β = K = 8, and average over 3 different realizations for
all cases. In Fig. 6.2b, the average mean-square distance to the network centroid, i.e.,

Agreement error ≜
1
K

K∑
k=1

E∥wk,i −wc,i∥2, (6.71)

is plotted over time for the fully decentralized strategy. Confirming Theorem 6.2, it can
be seen that agreement error rapidly decreases and converges to a small value.

In Fig. 6.2c, we plot the evolution of the average squared Bellman error (SBE) in the log
domain, where the SBE expression is given by:

SBE ≜
1
K

K∑
k=1

δ2
k,i, (6.72)

and similarly for the centralized cases. It measures the network average of instan-
taneous TD-errors. It can be seen that all approaches converge, and in particular,
diffusion strategy (Alg. 6.2) yields a comparable performance with CD (Alg. 6.3). This
observation is in line with Theorem 6.3, which states that the disagreement between
the fully decentralized strategy and the baseline centralized training for decentralized
execution strategy is bounded. Notice also that CC (Alg. 6.1) results in a higher SBE
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compared to the diffusion and CD, despite being a fully centralized strategy. This
is because, CC evaluates a different policy, namely, the centralized execution policy.
Therefore, as argued in Sec. 6.4.3, the SBE of CC is not a suitable baseline for the
diffusion strategy.

6.6 Concluding Remarks

In this chapter, we proposed a policy evaluation algorithm for Dec-POMDPs over
networks. We carried out a rigorous analysis that established: (i) the beliefs formed
with local information and interactions have a bounded disagreement with the global
posterior distribution, (ii) agents’ value function parameters cluster around the net-
work centroid, and (iii) the decentralized training can match the performance of the
centralized training with appropriate parameters and increasing network connectivity.

There are two limitations of the current work that can be addressed in future work. First,
we assume that agents know the local likelihood and transition models accurately. One
possible question is if agents have approximation errors for the models, how would
these affect the analytical results. Second, an implication of Theorem 6.3 is that there
is necessity for regularization (ρ > 0). We leave the question of whether one can get
bounds that does not require this, possibly with more assumptions on the model, to
future work.

6.A Proof of Theorem 6.1

We can rewrite the risk function as

Jk,i = EFiDKL(µi||µk,i)

= EFi

[∑
s∈S

µi(s) log µi(s)
µk,i(s)

]
(a)= EFi

[∑
s∈S

P(si = s|F i) log µi(s)
µk,i(s)

]
(b)= EFi

[
Esi|Fi

(
log µi(si)

µk,i(si)

)]
= EFi,si

[
log µi(si)

µk,i(si)

]
, (6.73)

where (a) follows from definition (6.7), (b) follows from the definition of conditional
expectation with respect to si given F i. Merging the diffusion adaptation step (6.33)
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and the combination step (6.34) together yields the following form

µk,i(s) ∝
∏
ℓ∈Nk

(Lℓ(ξℓ,i|s))βcℓk(ηℓ,i(s))cℓk , (6.74)

which, combined with the update equation (6.20) for the centralized solution, results
in

log µi(s)
µk,i(s)

=
∑
ℓ∈Nk

cℓk

(
log L(ξi|s)

(Lℓ(ξℓ,i|s))β
+ log ηi(s)

ηℓ,i(s)

)

+ log
∑
s′∈S

( ∏
ℓ∈Nk

(Lℓ(ξℓ,i|s′))βcℓk
∏
ℓ∈Nk

(ηℓ,i(s′))cℓk

)
− logmi(ξi). (6.75)

Here, we introduced the marginal distribution of the new observation given the past
observations and actions:

mi(ξi) ≜ P(ξi = ξi|Fa
i−1) =

∑
s∈S

P(ξi = ξi, si = s|Fa
i−1)

=
∑
s∈S

L(ξi|s)P(si = s|Fa
i−1)

=
∑
s∈S

L(ξi|s)ηi(s). (6.76)

Observe that the expectation of the log-likelihood ratio terms in (6.75) satisfies:

∑
ℓ∈Nk

cℓkEξi,si

[
log L(ξi|si)

(Lℓ(ξℓ,i|si))β
]

(a)= Eξi,si

[ K∑
ℓ=1

logLℓ(ξℓ,i|si)
]
−
∑
ℓ∈Nk

cℓkEξℓ,i,si

[
β logLℓ(ξℓ,i|si)

]

= Eξi,si

[ K∑
ℓ=1

(1− βcℓk) logLℓ(ξℓ,i|si)
]

(6.77)

where in (a) we used the spatial independency of the observations. Likewise, the
expectation of the time-adjusted terms in (6.75) can be written as:

∑
ℓ∈Nk

cℓkEFi,si

[
log ηi(si)

ηℓ,i(si)

]
(a)=

∑
ℓ∈Nk

cℓkEFi,si

[
log ηi(si)

η̃ℓ,i(si)
+ log η̃ℓ,i(si)

ηℓ,i(si)

]

=
∑
ℓ∈Nk

cℓkEFa
i−1,si

[
Eξi|Fa

i−1,si

(
log ηi(si)

η̃ℓ,i(si)
+ log η̃ℓ,i(si)

ηℓ,i(si)

)]
(b)=

∑
ℓ∈Nk

cℓkEFa
i−1,si

[
log ηi(si)

η̃ℓ,i(si)
+ log η̃ℓ,i(si)

ηℓ,i(si)

]
(6.78)
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where in (a) we defined the agent-specific distribution:

η̃ℓ,i(s) ≜
∑
s′∈S

T(s|s′,ai−1)µℓ,i−1(s′), (6.79)

and (b) follows from the fact that the arguments are deterministic given the current
state and the history of actions and observations. The first term of (6.78) can be written
as a KL-divergence because of the following:

∑
ℓ∈Nk

cℓkEFa
i−1,si

[
log ηi(si)

η̃ℓ,i(si)

]
=
∑
ℓ∈Nk

cℓkEFa
i−1

[
Esi|Fa

i−1

(
log ηi(si)

η̃ℓ,i(si)

)]

=
∑
ℓ∈Nk

cℓkEFa
i−1

[∑
s∈S

P(si = s|Fa
i−1) log ηi(s)

η̃ℓ,i(s)

]
(6.9)=

∑
ℓ∈Nk

cℓkEFa
i−1

[∑
s∈S

ηi(s) log ηi(s)
η̃ℓ,i(s)

]

=
∑
ℓ∈Nk

cℓkEFa
i−1

[
DKL(ηi||η̃ℓ,i)

]
. (6.80)

This expected KL-divergence can be bounded by using the strong-data processing
inequality:

∑
ℓ∈Nk

cℓkEFa
i−1

[
DKL(ηi||η̃ℓ,i)

]
≤
∑
ℓ∈Nk

cℓkκ(T)EFi−1

[
DKL(µi−1||µℓ,i−1)

]
︸ ︷︷ ︸

Jℓ,i−1

. (6.81)

The second term of (6.78) arises due to transition model disagreement with the cen-
tralized belief. To bound it, we first introduce the LogSumExp function f with vector
arguments ν ∈ RS :

f(ν) ≜ log
∑
s∈S

exp{ν(s)}. (6.82)

Its gradient is given by

∇νf(ν) ≜ col
{
∂f(ν)
∂ν(s)

}
s∈S

= col
{ exp{ν(s)}∑

s′ exp{ν(s′)}

}
s∈S

. (6.83)

Observe that if we introduce the vectors

ν̃ℓ,i ≜ col
{

log
(
T(si|s,ai−1)µℓ,i−1(s)

)}
s∈S

(6.84)

and
νℓ,i ≜ col

{
log

(
Tπℓ (si|s,aNℓ,i−1)µℓ,i−1(s)

)}
s∈S

, (6.85)
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then, we can rewrite the second expression of (6.78) as follows:

∑
ℓ∈Nk

cℓkEFa
i−1,si

[
log η̃ℓ,i(si)

ηℓ,i(si)

]
=
∑
ℓ∈Nk

cℓkEFa
i−1,si

[
f(ν̃ℓ,i)− f(νℓ,i)

]
. (6.86)

Applying mean value theorem to this difference yields

EFa
i−1,si

[
f(ν̃ℓ,i)− f(νℓ,i)

]
= EFa

i−1,si

[
(∇νf(νℓ,i))T · (ν̃ℓ,i − νℓ,i)

]
(6.83)= EFa

i−1,si

[
col
{ exp{νℓ,i(s)}∑

s′ exp{νℓ,i(s′)}

}T

s∈S
· (ν̃ℓ,i − νℓ,i)

]
(6.84),(6.85)= EFa

i−1,si

[
col
{ exp{νℓ,i(s)}∑

s′ exp{νℓ,i(s′)}

}T

s∈S
· col

{
log T(si|s,ai−1)

Tπℓ (si|s,aNℓ,i−1)

}
s∈S

]
(6.87)

for some νℓ,i between ν̃ℓ,i and νℓ,i. The term in (6.87) is bounded as follows:∣∣∣∣∣∣EFa
i−1,si

[
col
{ exp{νℓ,i(s)}∑

s′ exp{νℓ,i(s′)}

}T

s∈S
· col

{
log T(si|s,ai−1)

Tπℓ (si|s,aNℓ,i−1)

}
s∈S

]∣∣∣∣∣∣
(a)
≤ EFa

i−1,si

∣∣∣∣∣∣col
{ exp{νℓ,i(s)}∑

s′ exp{νℓ,i(s′)}

}T

s∈S
· col

{
log T(si|s,ai−1)

Tπℓ (si|s,aNℓ,i−1)

}
s∈S

∣∣∣∣∣∣
(b)
≤ EFa

i−1,si

∥∥∥∥col
{ exp{νℓ,i(s)}∑

s′ exp{νℓ,i(s′)}

}
s∈S

∥∥∥∥
1
·
∥∥∥∥col

{
log T(si|s,ai−1)

Tπℓ (si|s,aNℓ,i−1)

}
s∈S

∥∥∥∥
∞


(c)= Esi,ai−1

∥∥∥∥∥∥col
{

log T(si|s,ai−1)
Tπℓ (si|s,aNℓ,i−1)

}
s∈S

∥∥∥∥∥∥
∞

(6.88)

where (a) follows from the Jensen’s inequality, (b) follows from the Hölder’s inequality,
and (c) follows from the fact that∥∥∥∥∥∥col

{ exp{νℓ,i(s)}∑
s′∈S exp{νℓ,i(s′)}

}∥∥∥∥∥∥
1

= 1. (6.89)

Furthermore, due to Assumption 6.1 and to the fact that the number of maximum
hops outsideNk is (K − |Nk|), we have∣∣∣∣∣∣ log T(si|s,ai−1)

Tπk(si|s,aNk,i−1)

∣∣∣∣∣∣ ≤ (K − |Nk|) τ ≤ (K − dmin) τ. (6.90)
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If we combine (6.81), (6.86), and (6.90), the expectation of the time-adjusted terms in
(6.75) can be bounded as:

∑
ℓ∈Nk

cℓkEFa
i−1,si

[
log ηi(si)

ηℓ,i(si)

]
≤ (K − dmin) τ +

∑
ℓ∈Nk

cℓkκ(T)Jℓ,i−1 (6.91)

Next, we bound the expectation of the remaining normalization terms in (6.75), which
follows similar steps to what was done in the previous chapter:

EFi

 log
∑
s′∈S

(∏
ℓ∈Nk

(Lℓ(ξℓ,i|s′))βcℓk
∏
ℓ∈Nk

(ηℓ,i(s′))cℓk

)− EFi

[
logmi(ξi)

]

(a)
≤ EFi

 log
∑
s′∈S

( ∏
ℓ∈Nk

(Lℓ(ξℓ,i|s′))βcℓk
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)− EFi

[
logmi(ξi)

]

= EFi

 log
∑
s′∈S

( ∏
ℓ∈Nk

(Lℓ(ξℓ,i|s′))βcℓk
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

− EFi

 log
∑
s′∈S

( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

+ EFi

 log
∑
s′∈S

( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)− EFi

[
logmi(ξi)

]

(b)
≤ EFi

 log
∑
s′∈S

( K∏
ℓ=1

(Lℓ(ξℓ,i|s′))βcℓk
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

− EFi

 log
∑
s′∈S

( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
) (6.92)

where (a) follows from the arithmetic-geometric mean inequality, (b) follows from:

−EFi

 log mi(ξi)∑
s′∈S

(∏K
ℓ=1Lℓ(ξℓ,i|s′)

∑
ℓ∈Nk

cℓkηℓ,i(s′)
)
= −EFa

i−1
Eξi|Fa

i−1

 log mi(ξi)
m†

i (ξi)


= −EFa

i−1
DKL(mi(ξi)||m†

i (ξi))

≤ 0 (6.93)

where we used the definition:

m†
i (ξi) ≜

∑
s′∈S

( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)
, (6.94)
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which is a density (or mass function if observations are discrete) since

∫
ξi

m†
i (ξi)dξi =

∫
ξi

∑
s′∈S

( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)
dξi

=
∑
s′∈S

[ ∫
ξi

K∏
ℓ=1

Lℓ(ξℓ,i|s′)dξi︸ ︷︷ ︸
1

K∑
ℓ=1

cℓkηℓ,i(s′)
]

=
∑
s′∈S

[ K∑
ℓ=1

cℓkηℓ,i(s′)
]

=
K∑
ℓ=1

cℓk

[ ∑
s′∈S

ηℓ,i(s′)
]

= 1. (6.95)

Notice that the expression in (6.92) can be rewritten as

EFi

 log
∑
s′∈S

( K∏
ℓ=1

(Lℓ(ξℓ,i|s′))βcℓk
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

− EFi

 log
∑
s′∈S

( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

= EFi

[
f(ϑk,i)

]
− EFi

[
f(ϑ̃k,i)

]
, (6.96)

if we use the LogSumExp function f from (6.82) and use the definitions:

ϑk,i ≜ col

 log
( K∏
ℓ=1

(Lℓ(ξℓ,i|s′))βcℓk
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

s′∈S

(6.97)

and

ϑ̃k,i ≜ col

 log
( K∏
ℓ=1

Lℓ(ξℓ,i|s′)
∑
ℓ∈Nk

cℓkηℓ,i(s′)
)

s′∈S

. (6.98)

Following the steps in (6.87) and (6.88), this difference can be bounded as:

EFi

[
f(ϑk,i)

]
− EFi

[
f(ϑ̃k,i)

]
≤ Eξi

∥∥∥∥∥∥col
{ K∑
ℓ=1

(βcℓk − 1) logLℓ(ξℓ,i|s′)
}
s′∈S

∥∥∥∥∥∥
∞

. (6.99)

Again, similar to the previous chapter, by assumptions on the graph topology and on
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the likelihood functions (6.41), this expression can be further bounded as:∥∥∥∥∥∥col
{ K∑
ℓ=1

(βcℓk − 1) logLℓ(ξℓ,i|s′)
}
s′∈S

∥∥∥∥∥∥
∞

≤
√
KβλB (6.100)

Subsequently, if we insert the bounds (6.77), (6.91), and (5.105) to (6.75), we arrive at
the bound on the risk function:

Jk,i ≤ Eξi,si

[ K∑
ℓ=1

(1− βcℓk) logLℓ(ξℓ,i|si)
]

+ κ(T)
∑
ℓ∈Nk

cℓkJℓ,i−1 +
√
KβλB + (K − dmin) τ

(5.105)
≤ κ(T)

∑
ℓ∈Nk

cℓkJℓ,i−1 + 2
√
KβλB + (K − dmin) τ. (6.101)

Expanding this recursion over time yields:

Jk,i ≤ (2
√
KβλB + (K − dmin) τ)

i−1∑
j=0

(κ(T))j + (κ(T))i
K∑
ℓ=1

[Ci]ℓkJℓ,0

= 1− (κ(T))i

1− κ(T) (2
√
KβλB + (K − dmin) τ) + (κ(T))i

K∑
ℓ=1

[Ci]ℓkJℓ,0, (6.102)

which implies that if κ(T) < 1, the risk function is bounded as i→∞:

lim sup
i→∞

Jk,i ≤
2
√
KβλB + (K − dmin) τ

1− κ(T) . (6.103)

By (6.91), this also implies that

lim sup
i→∞

J̃k,i ≤ (K − dmin)τ + κ(T) lim sup
i→∞

Jk,i

≤ (K − dmin)τ
1− κ(T) + κ(T)2

√
KβλB

1− κ(T) . (6.104)

6.B Proof of Corollary 6.1

In view of the Bretagnolle-Huber inequality [126], it holds that

∑
s∈S

∣∣∣µi(s)− µk,i(s)∣∣∣ ≤ 2
(
1− exp{−DKL(µi||µk,i)}

) 1
2 . (6.105)
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If we take the expectation of both sides, we get

E
[∑
s∈S

∣∣∣µi(s)− µk,i(s)∣∣∣] ≤ 2E
(
1− exp{−DKL(µi||µk,i)}

) 1
2

(a)
≤ 2

(
1− E exp{−DKL(µi||µk,i)}

) 1
2

(b)
≤ 2

(
1− exp{−Jk,i}

) 1
2 , (6.106)

where (a) and (b) follow from Jensen’s inequality. Together with Theorem 6.1, this
implies that

E
∥∥∥µi − µk,i∥∥∥1

≤ BTV, (6.107)

where we use the definition (6.50). Furthermore, on account of the fact that the ℓ2-
norm of a vector is upper bounded by the ℓ1-norm in RS , it is also true that

E
∥∥∥µi − µk,i∥∥∥ ≤ BTV. (6.108)

With similar arguments, it can be shown that

E
∥∥∥ηi − ηk,i∥∥∥ ≤ B̃TV, (6.109)

where we use the definition (6.51).

6.C Proof of Lemma 6.1

Inserting the definitions (6.54) and (6.58), the expected difference can be expanded as

E∥Hk,i −H⋆
i ∥= E

∥∥∥∥ϕ(µk,i)ϕ(µk,i)T − γϕ(µk,i)ϕ(ηk,i+1)T

− ϕ(µi)ϕ(µi)T + γϕ(µi)ϕ(ηi+1)T
∥∥∥∥

≤ E
∥∥∥∥ϕ(µk,i)ϕ(µk,i)T − ϕ(µi)ϕ(µi)T

∥∥∥∥
+γE

∥∥∥∥ϕ(µk,i)ϕ(ηk,i+1)T − ϕ(µi)ϕ(ηi+1)T
∥∥∥∥, (6.110)

where the last step follows from the triangle inequality. The first term can be bounded
as ∥∥∥∥ϕ(µk,i)ϕ(µk,i)T − ϕ(µi)ϕ(µi)T

∥∥∥∥
≤
∥∥∥∥ϕ(µk,i)(ϕ(µk,i)T − ϕ(µi)T)

∥∥∥∥+
∥∥∥∥(ϕ(µk,i)− ϕ(µi))ϕ(µi)T

∥∥∥∥
≤
∥∥∥ϕ(µk,i)

∥∥∥∥∥∥ϕ(µk,i)− ϕ(µi)
∥∥∥+

∥∥∥ϕ(µk,i)− ϕ(µi)
∥∥∥∥∥∥ϕ(µi)

∥∥∥
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(a)
≤ BϕLϕ∥µk,i − µi∥+BϕLϕ∥µk,i − µi∥, (6.111)

where (a) follows from Assumption 6.2. Taking expectations and using (6.48) and
(6.111), it follows that

E
∥∥∥∥ϕ(µk,i)ϕ(µk,i)T − ϕ(µi)ϕ(µi)T

∥∥∥∥ ≤ 2BϕLϕBTV. (6.112)

Similarly, the second term in (6.110) can be bounded as∥∥∥∥ϕ(µk,i)ϕ(ηk,i+1)T − ϕ(µi)ϕ(ηi+1)T
∥∥∥∥

≤
∥∥∥∥ϕ(µk,i)(ϕ(ηk,i+1)T − ϕ(ηi+1)T)

∥∥∥∥+
∥∥∥∥(ϕ(µk,i)− ϕ(µi))ϕ(ηi+1)T

∥∥∥∥
≤
∥∥∥ϕ(µk,i)

∥∥∥∥∥∥ϕ(ηk,i+1)− ϕ(ηi+1)
∥∥∥+

∥∥∥ϕ(µk,i)− ϕ(µi)
∥∥∥∥∥∥ϕ(ηi+1)

∥∥∥
(a)
≤ BϕLϕ∥ηk,i+1 − ηi+1∥+BϕLϕ∥µk,i − µi∥ (6.113)

where (a) follows from Assumption 6.2. Using (6.48) and (6.49) we get:

E
∥∥∥∥ϕ(µk,i)ϕ(ηk,i+1)T − ϕ(µi)ϕ(ηi+1)T

∥∥∥∥ ≤ BϕLϕ(BTV + B̃TV). (6.114)

Combining (6.112) and (6.114) in addition to the fact that B̃TV ≤ BTV (since κ(T) < 1)
yields:

E∥Hk,i −H⋆
i ∥ ≤ 2BϕLϕBTV(1 + γ). (6.115)

6.D Proof of Theorem 6.2

For compactness of notation, it is useful to introduce the following quantities, which
collect variables from across all agents:

Wi ≜ col {w1,i, . . . ,wK,i} (6.116)

C ≜ C ⊗ IM (6.117)

Hi ≜ diag {Hk,i}Kk=1 (6.118)

H⋆
i ≜ IK ⊗H⋆

i (6.119)

di ≜ col {dk,i}Kk=1 (6.120)

Then, equations (6.36)–(6.38) can be written as:

Wi+1 = CT
(

(I(1− 2αρ)− αHi) Wi +αdi
)
. (6.121)
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We define the K-times extended centroid vector:

Wc,i ≜ 1K ⊗wc,i =
( 1
K
1K1

T
K ⊗ I

)
Wi . (6.122)

If we decompose Hi into its centralized component H⋆
i and the respective disagree-

ment matrix ∆i ≜Hi −H⋆
i , we obtain:

Wi+1 −Wc,i+1

=
(
CT − 1

K
1K1

T
K ⊗ I

)(
(I(1− 2αρ)− αHi) Wi +αdi

)
=
(
CT − 1

K
1K1

T
K ⊗ I

)(
(I(1− 2αρ)− αH⋆

i − α∆i) Wi +αdi
)

=
(
CT − 1

K
1K1

T
K ⊗ I

)(
(I(1− 2αρ)− αH⋆

i ) (Wi−Wc,i)− α∆i Wi +αdi
)
,

(6.123)

where the last step follows from the fact that

CT
(
I(1− 2αρ)− αH⋆

i

)
Wc,i =

( 1
K
1K1

T
K ⊗ I

)(
I(1− 2αρ)− αH⋆

i

)
Wc,i . (6.124)

Taking the norms of both sides in (6.123) leads to∥∥∥∥Wi+1−Wc,i+1

∥∥∥∥
≤
∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥× ∥∥∥∥ (I(1− 2αρ)− αH⋆
i ) (Wi−Wc,i)− α∆i Wi +αdi

∥∥∥∥
≤
∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥ ∥I(1− 2αρ)− αH⋆
i ∥∥Wi−Wc,i ∥

+ α

∥∥∥∥CT − 1
K
1K1

T
K ⊗ I

∥∥∥∥(∥∆i∥∥Wi ∥+ ∥di∥
)
. (6.125)

Since the combination matrix C is a primitive stochastic matrix, it follows from the
Perron-Frobenius theorem [7, 11] that its maximum eigenvalue is 1, and all other
eigenvalues are strictly smaller than 1 in absolute value. Moreover, C is assumed to be
symmetric, therefore its eigenvalue decomposition has the following form:

C = UΛU⊤

=
[
u1 u2 · · · uK

]


1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK



u⊤

1
u⊤

2
...
u⊤
K

 (6.126)

where U is a unitary matrix of eigenvectors {uk}, and Λ is the diagonal matrix of
eigenvalues. Additionally, the powers of C converge (because it is primitive) to the
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scaled all-ones matrix (because it is doubly-stochastic):

lim
i→∞

Ci =
[
u1 u2 · · · uK

]


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



u⊤

1
u⊤

2
...
u⊤
K



= 1
K


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 = 1
K
1K1

⊤
K (6.127)

Therefore, the difference of these matrices becomes:

C − 1
K
1K1

⊤
K = U


0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK

U⊤, (6.128)

which implies: ∥∥∥∥C − 1
K
1K1

⊤
K

∥∥∥∥ = λ2 (6.129)

where λ2 is the second largest modulus eigenvalue of C. Moreover, the Kronecker
product with the identity matrix does not change the spectral norm, hence:∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥ = λ2 < 1. (6.130)

Moreover, we know from Lemma 6.1 that

E∥∆i∥ ≤ 2BϕLϕBTV(1 + γ). (6.131)

Additionally, in Appendix 6.F, we establish (6.132)–(6.135) which hold for any realiza-
tion (with probability 1). From (6.158), note that:∥∥∥∥∥I(1− 2αρ)− αH⋆

i

∥∥∥∥∥ < 1 (6.132)

whenever ρ > γLϕBϕ/
√

2. Specifically, if ρ ≥ 0.75γLϕBϕ, then∥∥∥∥∥I(1− 2αρ)− αH⋆
i

∥∥∥∥∥ ≤ (1− 0.08αγLϕBϕ). (6.133)
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In addition, we show in Lemma 6.2 that

∥Wi∥ ≤
√
KRmax

0.08γLϕ
(6.134)

and in expression (6.159) that

∥di∥ ≤
√
KRmaxBϕ. (6.135)

Inserting these results into (6.125) yields the following norm recursion:

E
∥∥∥Wi+1−Wc,i+1

∥∥∥ ≤ λ2(1− 0.08αγBϕLϕ)E
∥∥∥Wi−Wc,i

∥∥∥+ αλ2
√
Kϵ. (6.136)

Let us define the constant λ̃2 ≜ λ2(1 − 0.08αγBϕLϕ). Iterating (6.136) over time, we
arrive at

E ∥Wi+1−Wc,i+1∥ ≤ λ̃i+1
2 ∥W0−Wc,0 ∥+ αλ2

√
Kϵ

i+1∑
j=1

λ̃i+1−j
2

≤ λ̃i+1
2 ∥W0−Wc,0 ∥+ αλ2

√
Kϵ

1
1− λ̃2

(a)
≤ αλ2

√
Kϵ

1
1− λ̃2

+O(α2) (6.137)

where (a) holds whenever:

λ̃i2∥W0−Wc,0 ∥ ≤ cα2

⇐⇒ i log λ̃2 ≤ 2 logα+ log c− log ∥W0−Wc,0 ∥

⇐⇒ i ≥ 2 logα
log λ̃2

+O(1) = O(logα) = o(1/α), (6.138)

where c is an arbitrary constant.

6.E Proof of Theorem 6.3

Similar to [127–130], we begin by rewriting the baseline strategy recursion (6.67)–(6.68)
in the form:

w⋆
i+1 = ((1− 2ρα)I − αH⋆

i )w⋆
i + αd⋆i , (6.139)

whereH⋆
i is defined in (6.58), and

d⋆i ≜
( 1
K

K∑
k=1

rk,i

)
ϕ(µi). (6.140)
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We introduce the K-times extended versions of the vectors:

D⋆
i ≜ 1K ⊗ d⋆i , W⋆

i = 1K ⊗w⋆
i . (6.141)

Then, the baseline recursion (6.139) transforms into

W⋆
i+1 = ((1− 2ρα)I − αH⋆

i ) W⋆
i +αD⋆

i . (6.142)

It follows from the extended network centroid definition (6.122) and (6.142) that

W⋆
i+1−Wc,i+1 = (I(1− 2αρ)− αH⋆

i ) (W⋆
i −Wc,i)

− α
(

1
K
1K1

T
K ⊗ I

)
∆i Wi +α

(
1
K
1K1

T
K ⊗ I

)
(D⋆

i − di) (6.143)

where we used the facts that ( 1
K
1K1

T
K ⊗ I

)
D⋆
i = D⋆

i , (6.144)

and ( 1
K
1K1

T
K ⊗ I

)
H⋆
i Wi = H⋆

i Wc,i . (6.145)

Next, if we define the following average agent disagreement relative to the baseline
term

d̃i ≜
1
K

K∑
k=1

(d⋆i − dk,i), (6.146)

it holds that
D̃i ≜ 1K ⊗ d̃i =

( 1
K
1K1

T
K ⊗ I

)
(D⋆

i − di). (6.147)

Subsequently, taking the norm of both sides in (6.143) and applying the triangle in-
equality, we get∥∥∥∥W⋆

i+1−Wc,i+1

∥∥∥∥
≤
∥∥∥∥I(1− 2αρ)− αH⋆

i

∥∥∥∥∥∥∥∥W⋆
i −Wc,i

∥∥∥∥+ α

∥∥∥∥ 1
K
1K1

T
K ⊗ I

∥∥∥∥∥∥∥∆i

∥∥∥∥∥∥Wi

∥∥∥+ α
∥∥∥D̃i

∥∥∥.
(6.148)

First, observe that ∥∥∥∥∥∥ 1
K
1K1

T
K ⊗ I

∥∥∥∥∥∥ = 1. (6.149)
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Moreover, from Assumption 6.2 and Corollary 6.1, it holds that

E∥d̃i∥ = E
∥∥∥∥ 1
K

K∑
k=1

rk,i(ϕ(µi)− ϕ(µk,i))
∥∥∥∥ ≤ RmaxLϕBTV, (6.150)

and accordingly,
E
∥∥∥D̃i

∥∥∥ ≤ √KRmaxLϕBTV. (6.151)

By using the same bounds (6.132)–(6.135) from Appendix 6.D for the other terms
(which are established in Lemmas 6.1 and 6.2, and equations (6.158) and (6.159)), we
arrive at the recursion:

E
∥∥∥∥W⋆

i+1−Wc,i+1

∥∥∥∥ ≤ (1− 0.08αγBϕLϕ)E
∥∥∥W⋆

i −Wc,i

∥∥∥+ α
√
Kϵ⋆, (6.152)

where

ϵ⋆ ≜ RmaxBTV

(2Bϕ(1 + γ)
0.08γ + Lϕ

)
. (6.153)

Iterating over time, we get:

E
∥∥∥∥W⋆

i+1−Wc,i+1

∥∥∥∥≤(1− 0.08αγBϕLϕ)i+1∥W⋆
0−Wc,0 ∥+ α

√
Kϵ⋆

i+1∑
j=1

(1− 0.08αγBϕLϕ)i+1−j

≤ (1− 0.08αγBϕLϕ)i+1∥W⋆
0−Wc,0 ∥+

√
Kϵ⋆

0.08γBϕLϕ
(a)
≤

√
Kϵ⋆

0.08γBϕLϕ
+ o(1) (6.154)

where (a) holds whenever

(1− 0.08αγBϕLϕ)i+1
∥∥∥W⋆

0−Wc,0
∥∥∥ = o(1)

⇐⇒ i log(1− 0.08αγBϕLϕ) = o(1)

⇐⇒ i ≥ o(1)
log(1− 0.08αγBϕLϕ) ≥ o

(
1

αγBϕLϕ

)
. (6.155)

6.F Auxiliary Results

In the following lemma, we prove that the value function parameters are bounded in
norm.
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Lemma 6.2 (Bounded parameters). For each agent k ∈ K, the iterate wk,i is
bounded in norm if ρ > γBϕLϕ/

√
2, with probability 1. In particular, if ρ ≥

0.75γBϕLϕ, then

∥Wi∥ ≤
√
KRmax

0.08γLϕ
(6.156)

after i ≥ i0 = o (1/(αγBϕLϕ)) iterations.

Proof. Taking the norms of both sides of (6.121) yields:

∥∥∥Wi+1
∥∥∥ =

∥∥∥∥CT
(

((1− 2αρ)I − αHi) Wi +αdi
)∥∥∥∥

≤
∥∥∥∥CT

∥∥∥∥∥∥∥∥ ((1− 2αρ)I − αHi) Wi +αdi
∥∥∥∥

(a)
≤
∥∥∥∥ ((1− 2αρ)I − αHi) Wi +αdi

∥∥∥∥
≤
∥∥∥(1− 2αρ)I − αHi

∥∥∥∥∥∥Wi

∥∥∥+ α
∥∥∥di∥∥∥ (6.157)

where (a) follows from the fact C is doubly stochastic and symmetric with spectral
radius equal to 1. Note that∥∥∥(1− 2αρ)I − αHk,i

∥∥∥
=
∥∥∥(1− 2αρ)I − αϕ(µk,i)ϕ(µk,i)T + αγϕ(µk,i)ϕ(ηk,i+1)T

∥∥∥
=
∥∥∥(1− 2αρ)I − α(1− γ)ϕ(µk,i)ϕ(µk,i)T − αγϕ(µk,i)

(
ϕ(µk,i)T − ϕ(ηk,i+1)T

)∥∥∥
≤
∥∥∥(1− 2αρ)I − α(1− γ)ϕ(µk,i)ϕ(µk,i)T

∥∥∥+ αγ∥ϕ(µk,i)∥
∥∥∥ϕ(µk,i)T − ϕ(ηk,i+1)T

∥∥∥
(a)
≤ (1− 2αρ) + αγ∥ϕ(µk,i)∥

∥∥∥ϕ(µk,i)T − ϕ(ηk,i+1)T
∥∥∥

(b)
≤ (1− 2αρ) + αγBϕLϕ

∥∥∥µk,i − ηk,i+1
∥∥∥

(c)
≤ (1− 2αρ) + αγBϕLϕ

√
2 (6.158)

where (a) follows from the equality of spectral norm and maximum eigenvalue for
symmetric matrices, (b) follows from Assumption 6.2, and (c) follows from the fact that
the mean-square distance cannot exceed 2 over the probability simplex. The upper
bound in (6.158) is smaller than 1 whenever ρ > γBϕLϕ/

√
2. Moreover,∥∥∥dk,i∥∥∥ =

∥∥∥rk,iϕ(µk,i)
∥∥∥ ≤ RmaxBϕ. (6.159)

169



Policy Evaluation in Dec-POMDPs

As a result, if ρ ≥ 0.75γBϕLϕ, we get:

∥∥∥Wi+1
∥∥∥ (6.158)
≤ (1− 0.08αγBϕLϕ)

∥∥∥Wi

∥∥∥+ α
∥∥∥di∥∥∥

(6.159)
≤ (1− 0.08αγBϕLϕ)

∥∥∥Wi

∥∥∥+ α
√
KRmaxBϕ. (6.160)

Iterating this recursion starting from i = 0 results in

∥∥∥Wi+1
∥∥∥ ≤ α√KRmaxBϕ

i+1∑
j=1

(1− 0.08αγBϕLϕ)i+1−j + (1− 0.08αγBϕLϕ)i+1
∥∥∥W0

∥∥∥
≤
√
KRmax

0.08γLϕ
+ (1− 0.08αγBϕLϕ)i+1

∥∥∥W0
∥∥∥

=
√
KRmax

0.08γLϕ
+ o(1), (6.161)

where the last step holds whenever

(1− 0.08αγBϕLϕ)i+1
∥∥∥W0

∥∥∥ = o(1)

⇐⇒ i log(1− 0.08αγBϕLϕ) = o(1)

⇐⇒ i ≥ o(1)
log(1− 0.08αγBϕLϕ) ≥ o

(
1

αγBϕLϕ

)
. (6.162)

■
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7 Causality in Social Networks

7.1 Introduction1

In this chapter, we aim to understand the influential agents in networked interactions.
This a crucial problem with wide-ranging applications, such as detecting propaganda-
sharing accounts [132] or selecting individuals to advertise to [133]. However, over
any social network, information usually spreads and mixes, leading to ripple effects
that make the discovery of influence rather challenging. For example, the information
leaving a source agent may be altered and combined with comments/data from other
agents along the path until it reaches its destination.

Most prior works measure influence through some network topology-based properties
such as the eigenvector centrality of an agent [134], or through some descriptive
importance factor depending on the problem at hand [135–137]. In comparison, this
work treats influence as a causal quantity and approaches it from the perspective
of structural causal models [138, 139]. More specifically, influence will be defined
as the change in behavior of the network when interventions occur at individual
agents. This is a useful method to discard spurious and non-causal associations, unlike
other methods based, for example, on the use of Granger causality [140]. Obviously,
conducting interventional experiments may not be always feasible over real world
social networks. However, with the help of appropriate representative models, one can
rely on the use of raw observational data [141].

To that end, in this chapter, we utilize the social learning models introduced earlier to
examine causal effects over social graphs. To the best of our knowledge, this appears to
be the first study to do so by studying the diffusion of influence over space and time
from a causal inference perspective.

1The material in this chapter is based on [131].
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7.1.1 Contributions

• We propose a novel causal impact criterion for dynamic social networks in
Sec. 7.3. It quantifies how much an agent m affects another agent k for each
agent pair (m, k).

• We derive in Secs. 7.4.1 and 7.4.2 closed-form expressions for these impact factors
for two social network models: geometric non-Bayesian social learning (Algo-
rithm 2.1) and adaptive social learning (Algorithm 2.3). Beyond general causal
influence expressions, we also analyze useful special cases to illustrate how the
causal effects depend on the model parameters.

• Analyzing the influence for every pair (m, k) results in a network causality matrix,
which offers various options to rank agents for their overall influence. In Sec. 7.5,
we propose a particular algorithm, CausalRank, to rank agents based on their
overall influence on the network, while accounting for the fact that more impact-
ful agents should be weighted more. This algorithm leverages the eigenvector
centrality of the bipartite causal relations matrix introduced in Sec. 7.3.

• Additionally, we introduce a graph causality learning (GCL) algorithm in Sec. 7.6,
designed to estimate causal influences using observational data comprised of
social interactions and the graph topology underlying the agents.

• In Sec. 7.7.1, we illustrate our results with synthetic data. In Sec. 7.7.2, we apply
these findings to real social media data, demonstrating their practical usefulness.

7.2 Challenges for Estimating Social Influence

Influence estimation over social networks faces several challenges.

Confounding factors. Understanding influence requires disentangling correlation
from causation. For example, over a social network, it is often observed that indi-
viduals who are connected tend to have similar (correlated) opinions. However, this
does not necessarily imply a causal relationship and there can also exist confounding
factors. For instance, individuals may obtain information from similar external sources
(say, the same TV channels), or they may be connected to others who share similar
preferences (a.k.a. homophily) — see left panel in Fig. 7.1. Similar issues arise in
distributed decision-making systems, such as networks of wireless sensors or robots.
Devices that communicate with each other are often in spatial proximity, leading to
correlated observations. Therefore, accounting for these confounding factors is crucial
for discovering true causal relationships.
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Figure 7.1: Some inherent challenges in estimating the causal influence of one agent on
another, represented by the red and blue agents, respectively. (Left): There can be confounding
factors that influence both parties and induce non-causal correlation. (Middle): Relationships
within social networks are often bidirectional that are not instantaneous, but rather spread
out over time. (Right): Information transmitted from the source is processed and potentially
changed along the way.

Temporal dynamics. Social influence is not a one-time occurrence but rather a con-
tinuous process that unfolds over time. Therefore, we adopt a time-series approach
to capture this dynamic nature. Unlike directed acyclic graph based models in the
literature, we accommodate both cyclic networks and bidirectional links to capture
feedback mechanisms — see middle panel in Fig. 7.1. Doing so is necessary in order to
discover the propagation of influence over both space and time.

Mixing and diffusion of information. When examining the influence of an agent m
on another agent k, it is essential to acknowledge that information leaving agent m
can undergo alterations and become intertwined with the opinions of other agents in
the network before reaching agent k — see right panel in Fig. 7.1. This phenomenon
introduces additional complexity to the study of influence propagation over graphs.

In this work, the social network models we consider allow us to treat these challenges
together in some detail. Specifically, the expressions we derive within a rigorous causal
theoretical framework quantify how the instantaneous and direct social effects diffuse
over time and space. In doing so, as we seek to understand the total and overall causal
effects, we take into account potential hidden confounding factors.

7.3 Causal Effects in Social Learning

An intuitive and widely used assertion in defining causality is that manipulation of the
causes should result in changes in the effect [142]. Based on this principle, interven-
tions on a system, real or hypothetical, have been the primary tool for testing whether
a variable causes another [139, Chapter 1]. In this work, in order to measure the causal
influence strength between agents, we rely on the most basic intervention known as
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atomic and persistent intervention [139, Chapter 3].

Specifically, in order to measure the social effect of an agent m on other agents, we
analyze the belief evolution of these other agents if the belief of agentm is fixed to some
particular constant belief vector, say, µm,i := µm for all time instants — see Fig. 7.2
for a visual depiction. In canonical causality notation, this intervention is denoted by
do(µm,i := µm) [139].
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7
<latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit>

8
<latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit><latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit><latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit><latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit>

k
<latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit><latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit><latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit><latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit>

<̀latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit><latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit><latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit><latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit>

K

<latexit sha1_base64="1VwH/VBvZ2ZtcR75GIQ+Wui2po8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3a3STsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgkfYMtwI7CYKqQwEdoLJ3dzvPKHSPI4ezDRBX9JRxEPOqLFSUw7KFbfqLkDWiZeTCuRoDMpf/WHMUomRYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZGlGJ2s8Wh87IhVWGJIyVrciQhfp7IqNS66kMbKekZqxXvbn4n9dLTXjrZzxKUoMRWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUeR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A5DaNIQ==</latexit>m

<latexit sha1_base64="QzGKII5BKgbMwlzXzx5p/b/MyCc=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCCykzUtRlwY3LCvYB7VAymUwbmseQZMQyduGvuHGhiFt/w51/Y6adhbYeSO7h3HvJyQkTRrXxvG9naXlldW29tFHe3Nre2XX39ltapgqTJpZMqk6INGFUkKahhpFOogjiISPtcHSd99v3RGkqxZ0ZJyTgaCBoTDEyVuq7h71QskiPuS1Z74FO+hk/s7db8areFHCR+AWpgAKNvvvViyROOREGM6R11/cSE2RIGYoZmZR7qSYJwiM0IF1LBeJEB9nU/wSeWCWCsVT2CAOn6u+NDHGdW7STHJmhnu/l4n+9bmriqyCjIkkNEXj2UJwyaCTMw4ARVQQbNrYEYUWtV4iHSCFsbGRlG4I//+VF0jqv+hfV2m2tUqdFHCVwBI7BKfDBJaiDG9AATYDBI3gGr+DNeXJenHfnYza65BQ7B+APnM8f9w2W2A==</latexit>

⇠m,i

<latexit sha1_base64="pPoLhAA4fJxCvDgMqvRiDgeCvB4=">AAAB/3icbVDLSgMxFL3js9bXqODGzWARXEiZkaIuC25cVrAPaIeSyWTa0EwyJBmxjF34K25cKOLW33Dn35hpZ6GtB5J7OPdecnKChFGlXffbWlpeWV1bL22UN7e2d3btvf2WEqnEpIkFE7ITIEUY5aSpqWakk0iC4oCRdjC6zvvteyIVFfxOjxPix2jAaUQx0kbq24e9QLBQjWNTst4DnfSz0Zm57YpbdadwFolXkAoUaPTtr14ocBoTrjFDSnU9N9F+hqSmmJFJuZcqkiA8QgPSNZSjmCg/m/qfOCdGCZ1ISHO4dqbq740MxSq3aCZjpIdqvpeL//W6qY6u/IzyJNWE49lDUcocLZw8DCekkmDNxoYgLKnx6uAhkghrE1nZhODNf3mRtM6r3kW1dlur1GkRRwmO4BhOwYNLqMMNNKAJGB7hGV7hzXqyXqx362M2umQVOwfwB9bnD/P/ltY=</latexit>

⇠k,i

<latexit sha1_base64="spx2C5dF50H8PDp+MWAgwoGQz/k=">AAACF3icbVDLSgMxFM3UV62vqks3wSJUkDIjRUUQCm5cVrAP6JQhk8m0oclkSDJiGeYv3Pgrblwo4lZ3/o1pOwttPRBycu495N7jx4wqbdvfVmFpeWV1rbhe2tjc2t4p7+61lUgkJi0smJBdHynCaERammpGurEkiPuMdPzR9aTeuSdSURHd6XFM+hwNIhpSjLSRvHLN1eTB+NJAZFXXFyxQY26u1OVJ5qX8hGYQXl5B8/Q4PPbKFbtmTwEXiZOTCsjR9MpfbiBwwkmkMUNK9Rw71v0USU0xI1nJTRSJER6hAekZGiFOVD+d7pXBI6MEMBTSnEjDqfrbkSKuJuOaTo70UM3XJuJ/tV6iw4t+SqM40STCs4/ChEEt4CQkGFBJsGZjQxCW1MwK8RBJhLWJsmRCcOZXXiTt05pzVqvf1isNmsdRBAfgEFSBA85BA9yAJmgBDB7BM3gFb9aT9WK9Wx+z1oKVe/bBH1ifPwJJn+Q=</latexit>

do(µm,i := µm)

Figure 7.2: An illustration of an atomic and persistent intervention on agent m = 1.

Since we consider only this intervention in this work and there is no room for ambiguity,
we will use the notation that the post-intervention counterparts of the variables in
Chapter 2 are topped with the symbol ‘∼’. For example, the log-belief ratio definition
from (2.35) transforms into the following, under the intervention do(µm,i := µm):

λ̃k,i(θ) ≜ log µ̃k,i(θ
◦)

µ̃k,i(θ)
. (7.1)

Causal influence strength. Intuitively, the amount of change in the effect following an
intervention on the cause is expected to be related to the causal strength. Therefore,
the difference between the post and pre-intervention distributions, or between appro-
priate functions of these distributions such as expectations, can be used to quantify
the causal effect [139, Chapter 3]. In this work, we employ the following definition in
order to measure the causal influence of agent m on agent k:

Cm→k ≜ µk,∞(θ◦)− µ̃k,∞(θ◦) (7.2)

This formula measures the alteration of agent k as a consequence of an intervention on
agentm. Specifically, it quantifies the magnitude of change of the expected asymptotic
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belief of agent k on the true state θ◦. In general, its value depends on the belief µm of
the intervention do(µm,i := µm). Here, we use the following expression for the belief
vector, which is explained in the sequel:

µk,∞(θ◦) ≜ 1
1 +

∑
θ∈Θ\{θ◦} exp{−λk,∞(θ)} . (7.3)

This expression is defined in terms of the expected asymptotic log-belief ratio:

λk,∞(θ) ≜ lim
i→∞

E[λk,i(θ)] (7.4)

The variables topped with the symbol ‘∼’ for the intervention case are defined similarly
(the existence of the limit for both NBSL and ASL under interventions will be discussed
in the sequel). The transformation (7.3) is motivated by noting from (2.35) that

exp
{
−λk,i(θ)

}
= µk,i(θ)
µk,i(θ◦) , (7.5)

which implies

1 +
∑

θ∈Θ\{θ◦}
exp

{
−λk,i(θ)

}
= 1
µk,i(θ◦)

∑
θ∈Θ

µk,i(θ) = 1
µk,i(θ◦) , (7.6)

which, in turn, yields

µk,i(θ◦) = 1
1 +

∑
θ∈Θ\{θ◦} exp{−λk,i(θ)}

. (7.7)

Here, if we replace log-belief ratio λk,i(θ) with the expected asymptotic log-belief ratio
λk,∞(θ), we arrive at the definition (7.3) for µk,∞(θ◦). Defining µk,∞(θ◦) in terms of the
expected log-belief ratios, as opposed to, say, expected beliefs (i.e., limi→∞ E[µk,i(θ◦)]),
will enable us to obtain closed-form expressions for causality in terms of the informa-
tiveness of the agents, represented by the entries of d(θ), in Sec. 7.4. Next, we treat
NBSL and ASL separately.

• Non-Bayesian social learning. In the idle case (i.e., no intervention) of NBSL, it
is known from Theorem 2.1 that under global identifiability, µk,i(θ◦) a.s.−−→ 1 (i.e.,
λk,i(θ)

a.s.−−→+∞ for each θ ̸= θ◦). Hence, for the NBSL case, the average (i.e.,
expected) causal influence (7.2) is given by

CNB
m→k = 1− µ̃k,∞(θ◦). (7.8)

This immediately implies that CNB
m→k ∈ [0, 1], and it gets larger as the post-

intervention belief diverges from the truth in expectation.

• Adaptive social learning. In a similar fashion, the causal effect strength for the
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ASL case is given by the general expression (7.2)

CASL
m→k = µk,∞(θ◦)− µ̃k,∞(θ◦), (7.9)

where the pre-intervention asymptotic belief µk,∞(θ◦) can be found by inserting
λk,∞(θ) established in Corollary 2.1 in (7.3).

Remark 7.1 (Controllability). The influence Cm→k of agent m on agent k can
also be interpreted as the controllability or manipulability of agent k by agent m.

7.4 Theoretical Results

In this section, we derive closed-form expressions for λ̃k,∞ ≜ [λ̃k,∞(θ1), . . . , λ̃k,∞(θH)]T

in terms of the network topology and the informativeness of agents to obtain the causal
strength measuresCNB

m→k andCASL
m→k. For ease of notation and without loss of generality,

we set m = 1. One can obtain CNB
m→k by setting β = 1 and δ → 0 in CASL

m→k due to (2.7)
and (2.16). Nevertheless, we first present the analysis for NBSL since it is easier to
derive and provides useful insights for ASL. Subsequently, we provide the results for
ASL with proofs deferred to the appendix.

7.4.1 Non-Bayesian Social Learning

The intervention do(µ1,i := µ1) ceases (or obstructs the use of) all incoming infor-
mation at agent 1 from the neighborsN1 and the use of the streaming observations
ξ1,i from the environment. Consequently, we can model this effect by redefining the
combination matrix and the LLR vector counterparts under the intervention:

Ã ≜ [ãℓk], ãℓk ≜


1, ℓ = k = 1
0, ℓ ̸= k = 1
aℓk, ℓ ̸= 1, k ̸= 1

, x̃i(θ) ≜ [0,x2,i(θ), . . . ,xK,i(θ)]T. (7.10)

Observe that the effective combination matrix Ã can be obtained from A as follows:

A =


a11 rT

a21
... R

aK1

 =⇒ Ã =


1 rT

0 R

 , (7.11)
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for a (K − 1)× 1 dimensional vector r and and a (K − 1)× (K − 1) dimensional matrix
R:

r ≜ [a12 a13 . . . a1K ]T, R ≜


a22 . . . a2K

...
. . .

...
aK2 . . . aKK

 . (7.12)

The matrix structure of Ã belongs to the class of reducible combination matrices
[10,143] that arise in the analysis of weakly connected networks [144–147]. As opposed
to the strongly connected networks where information can flow thoroughly, in weakly
connected networks information can flow only in one direction between certain parts
of the network. In the current context, this corresponds to the fact that information
continues to flow from agent m in the form of its belief vector fixed at µm, but no
information is flowing into it in the sense that agent m ignores all signals arriving from
its neighbors and does not use them to update its local belief. However, in contrast to
these prior works that analyze opinion dynamics under weakly connected networks,
we are interested in the effect of the intervention on the original strongly connected
network. This alters the LLR xi(θ) as well — see (7.10). Similar to the original case in
(2.36), we proceed by studying the log-belief ratio evolution that results from using Ã:

λ̃i(θ) = ÃT(λ̃i−1(θ) + x̃i(θ)). (7.13)

Recursive application of (7.13) across i iterations to the log-belief ratio λ̃i(θ) yields

λ̃i(θ) =
i∑

j=1
(Ãi−j+1)Tx̃j(θ) + (Ãi)Tλ̃0(θ). (7.14)

To study (7.14), we need to evaluate the powers of the effective combination matrix:

Ãi =


1 r′

i
T

0 Ri

 , Ã∞ (a)=


1 1 . . . 1

0 0

 (7.15)

where (a) follows from the fact that the spectral radius of the matrixR is strictly smaller
than 1, i.e., R is a stable matrix [146, Lemma 1]. For each time i and 0 < j ≤ i, observe
that

(Ãi−j+1)Tx̃j(θ)
(7.10),(7.15)=


1 0

r′
i−j+1 Ri−j+1T




0
x2,j(θ)

...
xK,j(θ)

 (7.16a)

=⇒ [(Ãi−j+1)Tx̃j(θ)]1 = 0 (7.16b)
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and

(Ãi)Tλ̃0(θ) (7.10),(7.15)=


1 0

r′
i Ri

T





log µ1(θ◦)
µ1(θ)

log µ2,0(θ◦)
µ2,0(θ)

...

log µK,0(θ◦)
µK,0(θ)


(7.17a)

=⇒ [(Ãi)Tλ̃0(θ)]1 = log µ1(θ◦)
µ1(θ) (7.17b)

Inserting these into (7.14) verifies that the intervention is fixed as intended for all time
instants, since

[λ̃i(θ)]1
(7.14)=

i∑
j=1

[(Ãi−j+1)Tx̃j(θ)]1 + [(Ãi)Tλ̃0(θ)]1. (7.18a)

λ̃1,i(θ)
(7.16b),(7.17b)= log µ1(θ◦)

µ1(θ) , µ̃1,i(θ) = µ1(θ). (7.18b)

Moreover, if we take the expectation of both sides of (7.14), we get

E[λ̃i(θ)] =
i∑

j=1
(Ãi−j+1)TE[x̃j(θ)] + (Ãi)TE[λ̃0(θ)]

=
i∑

j=1
(Ãi−j+1)Td̃(θ) + (Ãi)TE[λ̃0(θ)]. (7.19)

where we are using the definition d̃(θ) ≜ [0, d2(θ), . . . , dK(θ)]T. Hence, in the limit (the
existence is guaranteed by the finiteness of LLRs and positive initial beliefs), it holds
that

lim
i→∞

E[λ̃i(θ)] = lim
i→∞

i∑
j=1

(Ãi−j+1)Td̃(θ) + (Ã∞)TE[λ̃0(θ)]

=
∞∑
j=1

(Ãj)Td̃(θ) + (Ã∞)TE[λ̃0(θ)]. (7.20)

If we incorporate (7.15) into (7.20), this implies for the log-belief ratios of all agents
except agent m = 1 that

λ̃−m,∞(θ) ≜ [λ̃2,∞(θ), . . . , λ̃K,∞(θ)]T =
∞∑
j=1

(Rj)Td−m(θ) +
(

log µm(θ◦)
µm(θ)

)
1K−1 (7.21)

where d−m(θ) is the (K − 1) × 1 dimensional vector of local KL divergences of the
remaining agents, i.e., d−m(θ) ≜ col{dℓ(θ)}Kℓ=2. Since R is a stable matrix, Eq. (7.21)

180



7.4 Theoretical Results

can alternatively be written as

λ̃−m,∞(θ) =
(
(I −RT)−1 − I

)
d−m(θ) +

(
log µm(θ◦)

µm(θ)

)
1K−1 (7.22)

The causal influence of agent m = 1 on agent k can now be calculated by inserting
λ̃k,∞(θ) into (7.3) to find µ̃k,∞(θ), which is the input for (7.8) that yields CNB

m→k. More
specifically, if we incorporate (7.22) into (7.3), we get

µ̃k,∞(θ◦) = 1

1 +
∑

θ∈Θ\{θ◦}

µm(θ)
µm(θ◦) exp

{
−
[(

(I −RT)−1 − I
)
d−m(θ)

]
k

} (7.23)

which, by (7.8), implies

CNB
m→k = 1− 1

1 +
∑

θ∈Θ\{θ◦}

µm(θ)
µm(θ◦) exp

{
−
[(

(I −RT)−1 − I
)
d−m(θ)

]
k

} . (7.24)

Equation (7.22) is a general result which shows that CNB
m→k is a function of (i) the

combination weights (via R), and (ii) the individual informativeness of each agent (via
d−m(θ)).

Remark 7.2 (Generalization to sub-networks). Note that expressions (7.22)-
(7.24) can generalize to the influence of a sub-network with multiple agents rather
than an individual agent m. In this case, upon intervening on all agents within
the sub-network, the effective combination matrix becomes

Ã =


I rT

0 R

 (7.25)

where the first entry in (7.11) is replaced by an identity matrix. Namely, if the
sub-network under consideration has size s, the identity, r and R matrices would
be of dimensions s× s, (K − s)× s, and (K − s)× (K − s), respectively. Similarly,
d−m(θ) can be replaced with local KL divergences of the agents that do not belong
to the treated sub-network.
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Remark 7.3 (Finite-time spread of influence). Expressions (7.22)-(7.24) reveal
how the total overall effects depend on direct instantaneous effects in temporal
networked interactions. For the spread of direct effects in a finite time instant n,
we can modify (7.21) and (7.22) as

λ̃−m,n(θ) ≜ [λ̃2,n(θ), . . . , λ̃K,n(θ)]T =
n∑
j=1

(Rj)Td−m(θ) +
(

log µm(θ◦)
µm(θ)

)
1K−1

(7.26)

due to (7.14), and consequently,

λ̃−m,n(θ) =
(
(I −RT)−1(I −Rn+1 T)− I

)
d−m(θ) +

(
log µm(θ◦)

µm(θ)

)
1K−1 (7.27)

For ease of the presentation, we continue to describe the total causal effects of a single
agent, even though our results can be extended to sub-network influence and finite
time analysis in a straightforward manner as discussed in the above remarks.

In (7.24), CNB
m→k represents a dose-response curve, assuming different values for differ-

ent intervention strengths (i.e., dose) µm. This is a typical situation in the context of
continuous-valued interventions. In some applications, however, it proves beneficial
to encapsulate the causal effect value with a single number. For this purpose, we may
set µm to be uniform across all hypotheses, i.e., µm(θ) = 1/H,∀θ ∈ Θ. This method of
summarizing the causal effect is denoted as follows:

CNB
m→k ≜ C

NB
m→k

∣∣∣∣
µm(θ)=1/H

(7.28)

In Appendix 7.A, we show that this choice effectively parallels the process of determin-
ing the average causal derivative effect [148, Chapter 6], which is a method commonly
used in the literature for summarizing the causal effect. Basically, it quantifies the
extent of change in agent k in response to an infinitesimal variation in the intervention
strength µm.

In the next section, we study two special network topologies that help illustrate the
dependencies of the causal effect more explicitly.

Special cases

Fully-connected and federated architectures. In this example, we consider a fully-
connected network (see Fig. 2.3) with a rank-one combination matrix and Perron
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vector v, i.e.,

A =


v1 v1 · · · v1
v2 v2 · · · v2
...

...
. . .

...
vK vK · · · vK

 = v1T
K . (7.29)

Recall that in terms of performance, this system is equivalent to a federated architec-
ture in which (i) agents send their beliefs to a fusion center after local adaptation, (ii)
the center averages the received beliefs in a weighted manner, and (iii) then broadcasts
the combined belief to all agents — see Fig. 2.2. Under intervention do(µ1,i := µ1), we
have

Ã =


1 v1 · · · v1
0 v2 · · · v2
...

...
. . .

...
0 vK · · · vK

 =⇒ R =


v2 · · · v2
...

. . .
...

vK · · · vK

 = v−m1
T
K−1 (7.30)

where v−m ≜ col{vℓ}Kℓ=2 is a (K − 1)× 1 dimensional vector consisting of all Perron
entries except for agent m = 1. Observe that

R2 = v−m1
T
K−1v−m1

T
K−1

(a)= (1− v1)v−m1
T
K−1, (7.31)

where (a) follows from the fact that 1T
Kv = 1 (Eq. (2.2)). Repeating the same arguments,

it holds that
Ri = (1− v1)i−1v−m1

T
K−1. (7.32)

Therefore,

(I −RT)−1 − I =
∞∑
i=1

(RT)i = 1K−1v
T
−m

∞∑
i=1

(1− v1)i−1 = 1
v1
1K−1v

T
−m. (7.33)

Inserting this into (7.22), we arrive at the following expression for each agent k ̸= m:

λ̃k,∞(θ) = 1
vm

K∑
ℓ=2

vℓdℓ(θ) + log µm(θ◦)
µm(θ) (7.34)

Combining (7.3) and (7.8) with (7.34) yields the causal effect:

CNB
m→k

(7.3),(7.8)= 1− 1
1 +

∑
θ∈Θ\{θ◦} exp{−λ̃k,∞(θ)}

(7.34)= 1− 1

1 +
∑

θ∈Θ\{θ◦}

µm(θ)
µm(θ◦) exp

{
− 1
vm

∑
ℓ̸=m

vℓdℓ(θ)
} . (7.35)
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The effect of agent m on all other agents is the same, which is expected due to the
symmetric nature of this special example. Furthermore, observe that the causal effect
CNB
m→k decreases with increasing λ̃k,∞(θ). On that account, from (7.34) and (7.35) it can

be seen that:

• Increasing the network centrality of agent m = 1 (i.e., increasing vm) decreases
λ̃k,∞(θ), and in turn increases the causal effect CNB

m→k. Therefore, an agent has
more effect on other agents if it has a higher network centrality. In particular, if

vm → 0 =⇒ λ̃k,∞(θ)→ +∞ =⇒ CNB
m→k → 0, (7.36)

which means that an agent with negligible network centrality has no causal effect
on other agents.

• Increasing network centrality and informativeness of the other agents ℓ ̸= m (i.e.,
increasing vℓ and dℓ(θ)) increases λ̃k,∞(θ), and in turn decreases the causal effect
CNB
m→k. In particular, if the most informative agents are equipped with the highest

network centrality, then
∑K
ℓ=2 vℓdℓ(θ) is large and it is harder for agent m = 1 to

control other agents.

• If the fixed belief on the true hypothesis µm(θ◦) decreases, then λ̃k,∞(θ) decreases
and the causal effect CNB

m→k increases. This suggests that the further from the
truth the information an agent supplies, the more effect that agent will have on
other agents. In other words, agents supplying misinformation have more effect
on the rest of the network. Specifically, observe that if the rest of the agents have
a low informativeness average, i.e., if

K∑
ℓ=2

vℓdℓ(θ) ≈ 0 =⇒ CNB
m→k ≈ 1− µm(θ◦). (7.37)

Therefore, the causal effect is proportional to the difference from the truth. It is
maximized (i.e., CNB

m→k = 1) when the fixed belief assigns 0 to the true hypothesis.

Ring architecture. In this example, we consider a unidirectional ring network where
each agent has a self-confidence ofα, and assigns a confidence of 1−α to the preceding
agent in the ring — see Fig. 7.3. Agents are indexed such that agent k + 1 receives (or
uses) information from agent k only. The combination matrix has the form:
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<latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit><latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit><latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit><latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit>

4
<latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit><latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit><latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit><latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit>

k
<latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit><latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit><latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit><latexit sha1_base64="4k4wc5epfIngZWGE5jZJOI+hDKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWao16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBA+IzD</latexit>

<̀latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit><latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit><latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit><latexit sha1_base64="5rEVNfGss0b42QOQ47E/+As79q4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsboQS+he8eFDx6i/y5r9x0+ag1QcDj/dmmJkXpoJr47pfTmVldW19o7pZ29re2d2r7x886CRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zcFH7nEZXmibw30xSDmI4kjzijppD6KMSg3nCb7hzkL/FK0oAS7UH9sz9MWBajNExQrXuem5ogp8pwJnBW62caU8omdIQ9SyWNUQf5/NYZObHKkESJsiUNmas/J3Iaaz2NQ9sZUzPWy14h/uf1MhNdBjmXaWZQssWiKBPEJKR4nAy5QmbE1BLKFLe3EjamijJj46nZELzll/8S/6x51fTuzhut6zKNKhzBMZyCBxfQgltogw8MxvAEL/DqxM6z8+a8L1orTjlzCL/gfHwDepmODw==</latexit>

K

6
<latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit><latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit><latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit><latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit>

7
<latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit>
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Figure 7.3: A unidirectional ring.

A =



α 1− α 0 · · · 0
0 α 1− α · · · 0
... 0 α · · ·

...

0
...

...
. . . 1− α

1− α 0 0 · · · α


. (7.38)

Under intervention do(µ1,i := µ1), we have

Ã =



1 1− α 0 · · · 0
0 α 1− α · · · 0

0 0 α · · ·
...

...
...

...
. . . 1− α

0 0 0 · · · α


=⇒ R =


α 1− α · · · 0

0 α · · ·
...

...
...

. . . 1− α
0 0 · · · α

 . (7.39)

As a result,

(I −RT) = (1− α)


1 0 · · · 0
−1 1 · · · 0

...
...

. . .
...

0 · · · −1 1

 =⇒ (I −RT)−1 = 1
1− α


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 ,
(7.40)
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which implies

((I −RT)−1 − I)d−m(θ) = 1
1− α

[
αd2(θ), d2(θ) + αd3(θ), . . . ,

K−1∑
ℓ=2

dℓ(θ) + αdK(θ)
]T
.

(7.41)

Consequently, for agent k,

λ̃k,∞(θ) = 1
1− α

k−1∑
ℓ=2

dℓ(θ) + α

1− αdk(θ) + log µm(θ◦)
µm(θ) (7.42)

and, in addition, by definitions (7.3) and (7.8),

CNB
m→k = 1− 1

1 +
∑

θ∈Θ\{θ◦}

µm(θ)
µm(θ◦) exp

{
− 1

1− α
k−1∑
ℓ=2

dℓ(θ)−
α

1− αdk(θ)
} . (7.43)

As stated before, the causal effect CNB
m→k decreases with increasing λ̃k,∞(θ). Therefore,

the following remarks for (7.42) and (7.43) are in place:

• Since the KL divergence dℓ(θ) is non-negative, λ̃k,∞(θ) is monotonically increas-
ing along the path k = 2 → . . . → k = K. Therefore, the causal effect of agent
m = 1 is monotonically decreasing along the same path: the closer agent m is to
an agent, the higher its effect on that agent. This is intuitive because the effect
that agent m has on agent k + 1 is transferred via agent k in the ring structure.
The difference between the causal effects of agent m on agents k and k + 1 is
proportional to the increase in λ̃k,∞(θ), that is,

λ̃k+1,∞(θ)− λ̃k,∞(θ) = dk(θ) + α

1− αdk+1(θ). (7.44)

This means that informative agents with high KL divergence on the path between
agent m and agent k reduce the causal effect CNB

m→k. In other words, the sphere of
influence of an agent m is bigger if there are no other informative agents in the
vicinity.

• For the immediate follower of agent m = 1, it follows that

λ̃2,∞(θ) = α

1− αd2(θ) + log µ1(θ◦)
µ1(θ) . (7.45)

If agent 2 is not sufficiently informative itself, i.e., d2(θ) is small, then λ̃2,∞(θ) gets
smaller and CNB

1→2 gets higher. In other words, an agent is more controllable if it is
not knowledgeable.

• The limiting average λ̃k,∞(θ) increases with increasing α. Therefore, if agents are
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more self-confident, the causal strength is smaller and agents are less controllable
by other agents.

7.4.2 Adaptive Social Learning

Similar to the modification in the NBSL case, the log-belief recursion (2.38) in ASL is
modified as follows under intervention do(µ1,i := µ1):

λ̃i(θ) = ÃT((1− δ)λ̃i−1(θ) + βx̃i(θ)). (7.46)

The effective combination matrix Ã continues to be given by (7.10). However, the
effective LLR is now given by

x̃i(θ) ≜
[
δ

β
log µ1(θ◦)

µ1(θ) ,x2,i(θ), . . . ,xK,i(θ)
]T
, (7.47)

where the first entry is different than the NBSL case. This is to compensate for the
presence of the parameters δ and β. Observe from (7.46) that Ã from (7.10) and x̃i(θ)
from (7.47) verify λ̃1,i(θ) = log µ1(θ◦)

µ1(θ) for all time instants, i.e., the intervention is fixed,
by similar arguments to (7.18b). In Appendix 7.B, we derive the following expression
for the limiting log-belief ratio expectations for the rest of the network:

λ̃−m,∞(θ)=
(

log µm(θ◦)
µm(θ)

)
(I − (1− δ)RT)−1r + β

1− δ

(
(I − (1− δ)RT)−1−I

)
d−m(θ)

(7.48)
The causal effect CASL

m→k can be calculated by inserting post-intervention expression
(7.48) and pre-intervention expression (2.40) into the definitions (7.3) and (7.9). Notice
from (7.48) that similar to the NBSL case, the causal effect depends on the informative-
ness of agents, the network topology, and the strength of intervention via d−m(θ), R,
and µm, respectively. In fact, if we set δ = 0 and β = 1, Eq. (7.48) reduces to the NBSL
expression (7.22) as expected. This is because the left-stochastic nature of A implies
that

r +RT1K−1 = 1K−1 ⇐⇒ (I −RT)−1r = 1K−1. (7.49)

In addition, the causal effects in ASL are affected by the importance weighting param-
eters δ and β, as well as by the vector r that represents the confidence weights other
agents assign to agentm. In (7.22), the entries of r implicitly influence the causal effect
via R: the column-wise summation of the entries of r and R results in 1 at all columns
due to the left-stochastic nature of A. In comparison, in ASL, both r and R impact
CASL
m→k explicitly. If we take a closer look at the terms in (7.48), we can see that:

• The vector that scales the intervened log-belief ratio log µm(θ◦)
µm(θ) can be expanded
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as

(I − (1− δ)RT)−1r = r+ (1− δ)RTr+ (1− δ)2R2 Tr+ (1− δ)3R3 Tr+ . . . (7.50)

On the RHS of this equation, the first r represents the scaling of the information
transferred from agent m to the rest of the network directly. Namely, for an agent
k, the scaling of the direct information is amk if m is an immediate neighbor
(m ∈ Nk); 0 if it is not (m /∈ Nk). On the other hand, the second term (1− δ)RTr

describes the scaling of the information transferred from agent m to the rest of
the network, which is then mixed with the other agents ∀k ̸= m (via RT) and
“forgotten” (i.e., lose its recency) for one time instant by a factor of (1− δ). The
consecutive terms over time follow from the same scaling argument.

• In a similar manner, we can express the matrix that scales the vector of individual
informativeness in the rest of the network d−m(θ) as:

1
1− δ

(
(I − (1− δ)RT)−1−I

)
= RT + (1− δ)R2 T + (1− δ)2R3 T + . . . (7.51)

Since there is no outgoing link from the rest of the network to agent m = 1 under
the intervention, the terms in this expression only depend on the combination
matrix R. When new information arrives to the remaining agents, it is first mixed
among these agents (corresponding to the first term RT on RHS), and then in the
next iteration, it is mixed again but also gets forgotten due to the time discount
factor δ (corresponding to the second term (1− δ)R2 T on RHS), and so on.

• Remember from (2.16) that β > 0 scales the likelihood of observations, reflect-
ing the weight agents place on their own observations originating from out-
of-network sources. As a result, notice that in (7.48), β scales the individual
informativeness dℓ(θ),∀ℓ ̸= m. In other words, it amplifies the effect of self
observations on the state of nature.

Next, we analyze the special cases introduced in the NBSL case under ASL framework.

Special cases

Fully-connected and federated architectures. In Appendix 7.C, we prove that the
additional δ and β parameters introduced for the ASL change the NBSL expression
(7.34) to

λ̃k,∞(θ) = 1
1− (1− δ)(1− vm)

β K∑
ℓ=2

vℓdℓ(θ) + vm log µm(θ◦)
µm(θ)

 (7.52)
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Notice that as δ → 0 and β → 1, (7.52) recovers (7.34) as expected, and the following
remarks from the NBSL case continue to hold here: (i) the influence of an agent
m = 1 is identical for each agent k ̸= 1 due to symmetry in the network topology,
(ii) increasing the network centrality of agent m increases its causal influence, and
(iii) increasing the network centrality and informativeness of the rest of the agents
ℓ ̸= 1 decreases the causal effect of m = 1. Moreover, since causal effect CASL

m→k is a
monotonic decreasing function of λ̃k,∞(θ) by (7.9), Eq. (7.52) also implies the following
conclusions:

• As stated after (7.48), β scales the informativeness of agents. Accordingly, (7.52)
reveals that the causal effect is decreasing with increasing β. This is justifiable
because as agents have greater reliance on their own observations about the state
of nature, they are less influenced by other agents in the network. It is worth
mentioning that in (7.52), the intervened log-belief ratio log µm(θ◦)

µm(θ) behaves as
“pseudo-informativeness”. It is scaled with the Perron entry vm of agent m = 1,
similar to how the rest of the agents’ informativeness is scaled with their own Per-
ron entries. The difference is that the other agents’ informativeness are based on
their log-likelihood ratios averaged with respect to the true distribution, whereas
the intervened log-belief ratio can be arbitrary, possibly supplying misinforma-
tion.

• In the special case when the remaining agents have no informativeness (i.e.,
dℓ(θ) = 0, ∀ℓ ̸= m), the limiting mean log-belief ratio vector in (7.52) turns into

λ̃k,∞(θ) = 1

1 + δ

( 1
vm
− 1

) log µm(θ◦)
µm(θ) . (7.53)

This is in contast to the NBSL case, where, λ̃k,∞(θ) = log µm(θ◦)
µm(θ) . In other words,

in steady-state of NBSL, the average beliefs of all agents become equal to the
intervened fixed belief µm, implying full controllability. In ASL, however, the
controllability is reduced by a factor of (1 + δ(1/vm − 1)) ≥ 1 as shown in (7.53).
In particular, increasing the forgetting factor δ decreases controllability, especially
when the network centrality of “controlling” agent m = 1 is small. However, if
agent m is highly central, i.e., vm → 1, then the forgetting factor δ has negligible
effect on controllability.

• Considering the general case (7.52), note that unlike β which only affects non-
intervened observations, δ affects both intervened beliefs and non-intervened
observations. Thus, to fully understand the impact of δ on the overall causal
effect, we must consider the exact values of the relevant parameters.

189



Causality in Social Networks

Ring architecture. In Appendix 7.D, we prove that the additional δ and β parameters
introduced for the ASL change the NBSL expression (7.42) to

λ̃k,∞(θ) =
(

log µm(θ◦)
µm(θ)

)(1− δ)k−2(1− α)k−1

(1− (1− δ)α)k−1 + βα

1− (1− δ)αdk(θ)

+ β

1− δ

k−1∑
ℓ=2

(1− δ)k−ℓ(1− α)k−ℓ

(1− (1− δ)α)k−ℓ+1 dℓ(θ)

(7.54)

from which we can make the following observations:

• As δ → 0 and β → 1, the NBSL expression (7.42) for ring architectures is recovered.
Similar to the earlier expressions, the causal effect decreases with increasing
informativeness of agents along the path between m = 1 and k (ℓ = 2, . . . , k − 1)
(the last term on RHS), and also decreases with increasing informativeness of
agent k. Informativeness is scaled by β as before.

• Recall that in NBSL, if the remaining agents have no informativeness, it holds
that λ̃k,∞(θ) = log µm(θ◦)

µm(θ) . In other words, agent m = 1 can fully control other
agents’ beliefs. Instead, in ASL, if dℓ(θ) = 0, ∀ℓ ̸= 1, it holds that

λ̃k,∞(θ) = (1− δ)k−2(1− α)k−1

(1− (1− δ)α)k−1

(
log µm(θ◦)

µm(θ)

)

= 1
1− δ

1− 1
1− α
δ

+ α


k−1 (

log µm(θ◦)
µm(θ)

)
. (7.55)

Observe that as the agent index k increases, the controllability decays at each
hop by a factor of

λ̃k+1,∞(θ)
λ̃k,∞(θ)

= 1− 1
1− α
δ

+ α
∈ [0, 1]. (7.56)

The decrease is higher when δ is higher because the information from agent
m = 1 gets “partially forgotten” at each hop as k (i.e., the distance to agent 1)
increases. However, in general, the informativeness of agents along the path is
not 0, and they have a shadowing effect on agent m’s influence, as argued before.
The forgetting factor δ decreases this shadowing effect as well, particularly for
agents far from agent k.

190



7.5 Causal Ranking of Agents

7.5 Causal Ranking of Agents

In the previous sections, we examined the bipartite influence between agents, that
is, how much an agent m affects another agent k in the network. By calculating this
influence for any pair of agents (m, k), we can construct a K ×K influence matrix C
with entries [C]mk = Cm→k. One is often interested in the overall influence of agent m
on the network rather than its effect on individual agents. To that end, in this section,
we describe a procedure to use C for ranking and quantifying the agents’ cumulative
effect over the network.

Since C is constructed from intervened belief dependent entries Cm→k, an ordering
based on C would be valid for a particular intervention. For an intervention dose
independent ranking of agents, one can consider the matrix C, which is formed with
dose independent causal effects Cm→k:

Cm→k ≜ Cm→k

∣∣∣∣
µm(θ)=1/H

(7.57)

where we extend the definition (7.28) for the NBSL case to the general case. For sim-
plicity of the presentation, in the sequel, we focus on the NBSL case, even though our
arguments keep holding for a general C as well as an ordering based on intervention
dose dependent matrix C, too. First, note that the causal effect for the NBSL case is
given by

CNB
m→k

(7.3),(7.8)= 1− 1
1 +

∑
θ∈Θ\{θ◦} exp{−λ̃k,∞(θ)}

(7.22)= 1− 1

1 +
∑

θ∈Θ\{θ◦}

µm(θ)
µm(θ◦) exp

{
−
[(

(I −RT)−1 − I
)
d−m(θ)

]
k

} . (7.58)

Here, setting µm(θ) = 1/H for any θ ∈ Θ based on (7.57) yields

CNB
m→k = 1− 1

1 +
∑

θ∈Θ\{θ◦}
exp

{
−
[(

(I −RT)−1 − I
)
d−m(θ)

]
k

} . (7.59)

Since all KL divergences are assumed to be finite (dk(θ) <∞) and the graph is strongly
connected, this implies ∥∥∥∥((I −RT)−1 − I

)
d−m(θ)

∥∥∥∥
∞
<∞. (7.60)

Incorporating this into (7.59) implies that CNB
m→k > 0, ∀m ̸= k. Furthermore, regarding

the diagonal elements of C, it holds by definition that an intervention on agent m
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implies

λ̃m,∞(θ) = log µm(θ◦)
µm(θ) (7.61)

As a result, if we set µm(θ) = 1/H,∀θ ∈ Θ

CNB
m→m

(7.3),(7.8)= 1− 1
1 +

∑
θ∈Θ\{θ◦} exp{−λ̃m,∞(θ)}

= 1− 1
1 +

∑
θ∈Θ\{θ◦} exp{0}

= 1− 1
H

> 0 (7.62)

Consequently, all entries of C are positive, which implies that C is a primitive ma-
trix [8]. Therefore, according to Perron’s theorem [4, 8, 11], C has a unique, real and
positive eigenvalue ρ that dominates all other eigenvalues in magnitude. Moreover,
the eigenvector q corresponding to ρ is unique up to a scaling and all its entries are
positive, i.e.,

Cq = ρq, qk > 0, ∀k = 1, . . . ,K. (7.63)

The entry qk is a measure of agent k’s overall influence over the network. The agents
can be ranked with respect to these entries. We name the resulting algoritm CausalRank
which is summarized in Algorithm 7.1. Importantly, the vector q — which is the output
of Alg. 7.1 — differs from the network centrality eigenvector v in general. While v
is determined solely by the combination matrix A (see (2.2)), as shown in previous
sections, causal influences and hence q depend on the informativeness of agents as
well. More specifically, (7.63) computes a causal eigenvector centrality that attributes
higher importance to exerting influence on agents who are themselves influential. A
possible alternative approach (which we call average influence ranking (AIR)) can treat
all agents with equal regard in the averaging process by assigning the following ranking
score to each agent m:

AIR(m) = 1
K − 1

∑
k ̸=m

Cm→k (7.64)

In contrast, rather than employing a simple averaging, CausalRank seeks the equilibrium
vector by assigning significant weights to those agents that have a higher influence
on other influential agents. This concept bears resemblance to other methodologies
based on eigenvector centrality, such as the PageRank algorithm [149]. While ranking
websites, PageRank gives preferential treatment to links from more central websites.

It is also worth mentioning that CausalRank is distinct from the causal ordering methods
for directed acyclic graphical models [148] since we are dealing with cyclic graphs with
bidirectional links due to our time-series setting. Furthermore, CausalRank is not only
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Algorithm 7.1 CausalRank Algorithm
1: Input: a network of K agents with indices {1, 2, . . . ,K}, combination matrix A, set

Θ of H hypotheses, informativeness vector d(θ)
2: Initialize: K ×K-dimensional influence matrix C
3: for each agent m = 1, 2, . . . ,K do
4: for each agent k = 1, 2, . . . ,K do
5: if m = k then
6: set [C]mm := 1− 1

H
7: else
8: compute the causal effect Cm→k with (7.59)
9: set [C]mk := Cm→k

10: end if
11: end for
12: end for
13: find the largest eigenvalue ρ of C
14: Output: the eigenvector q satisfying Cq = ρq

useful for ranking, but also provides information on the strength of agents’ overall
influence on others.

7.6 Causal Discovery from Observational Data

In Sec. 7.4, we derived the closed-form expressions (7.22) and (7.48) for the steady-
state equilibrium of the network under interventions, which necessitate knowledge of
the combination matrix A and the informativeness of agents d(θ). In practice, these
parameters might not be readily available. The work [137] introduced the Graph Social
Learning (GSL) algorithm, which can be used to recover A and d(θ) using a sequence
of publicly shared intermediate beliefs {ψk,i} in the observational setting of the ASL
algorithm. Using observational data only can be especially useful in social network
contexts where conducting experiments is not feasible. Nonetheless, [137] acknowl-
edge that the algorithm may not perform well in real-world scenarios, mainly due to
the limitations of the social learning model in accurately describing the real world.
However, in many applications, some information about the underlying combination
matrix A may already be available. For instance, in Twitter, the publicly available
adjacency matrix can provide information about which user follows which other users.

Taking these aspects into account, in this section, we propose an algorithm that uti-
lizes the adjacency matrix and a temporal sequence of publicly shared intermediate
beliefs {ψk,i} to estimate bipartite causal effects for both NBSL and ASL algorithms.
Specifically, we leverage the graph of user connections to estimate combination matrix
weights by using existing methods in the literature (e.g., averaging rule). Then, using
the estimated combination matrix, we estimate the informativeness of agents by us-
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ing belief update recursions. By inserting these to the closed-form expressions (7.22)
and (7.48), we estimate the causal effects. To that end, observe that the intermediate
log-belief ratios evolve based on a linear recursion due to (2.16):

Λi = (1− δ)ATΛi−1 + βXi (7.65)

where we are now defining the followingK ×H matrices over all agents k ∈ {1, . . . ,K}
and hypotheses θj ∈ Θ:

[Λi]kj ≜ log ψk,i(θ̂
◦)

ψk,i(θj)
, [Xi]kj ≜ log Lk(ξk,i|θ̂

◦)
Lk(ξk,i|θj)

. (7.66)

Here, θ̂◦ is an estimate for the latent state of nature θ◦ computed as follows after some
time M :

θ̂◦ ≜ arg max
θ∈Θ

K∑
k=1

ψk,M (θ). (7.67)

The rationale behind (7.67) is that under proper assumptions we know from Theo-
rems 2.1 and 2.3 that agents learn the true hypothesis with more confidence as M
grows. Our goal is to infer the true combination matrix A and informativeness vector
d(θ) for each hypothesis from a sequence of M + 1 matrices {ΛM ,ΛM−1, . . . ,Λ0} and
the adjacency matrix of the agents.

We can estimate A by using existing procedures in the literature for forming combina-
tion matrices from adjacency matrices, e.g., by using the averaging or relative degree
rules [8]. For instance, the averaging rule assigns the same weight to all neighbors of
an agent, i.e.,

[ Â ]ℓk =


1
|Nk|

, if there is a link from ℓ to k (i.e., ℓ ∈ Nk)

0, otherwise
(7.68)

After forming the combination matrix estimate Â, we can insert it into (7.65) and
average over available M samples to estimate the average log-likelihood ratios that
correspond to the informativeness of agents using

D̂ = 1
βM

M∑
i=1

(
Λi − (1− δ)ÂTΛi−1

)
. (7.69)

Then, one can replace A and dk(θj) with Â and [D̂]kj in Sec. 7.4 to obtain the causal
effect estimate Ĉm→k. The complete procedure is summarized in Alg. 7.2. Essentially,
it combines our causality results in Sec. 7.4 with a straightforward adjustment to the
GSL algorithm from [137].

The graph causality learning (GCL) algorithm (Alg. 7.2) only requires a sequence of
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Algorithm 7.2 Graph Causality Learning (GCL)

1: Input: a sequence of shared beliefs {ψk,i} for M + 1 time instants, the graph
topology of agents

2: Parameters: for NBSL δ = 0, β = 1, for ASL δ ∈ (0, 1), β > 0

3: set true state of nature estimate: θ̂◦ = arg max
θ∈Θ

K∑
k=1

ψk,M (θ)

4: form left-stochastic combination matrix estimate Â from input adjacency matrix,
e.g., by (7.68)

5: for i = 0, 1, . . . ,M do
6: for each agent k and hypothesis θj , set the entry:

[Λi]kj = log ψk,i(θ̂
◦)

ψk,i(θj)
(7.70)

7: end for
8: estimate the informativeness:

D̂ = 1
βM

M∑
i=1

(
Λi − (1− δ)ÂTΛi−1

)
(7.71)

9: for any given agent pair (m, k), compute approximate causal effect Ĉm→k by
replacing A and dk(θj) with Â and [D̂]kj in the original expression (7.2) for Cm→k

(which also requires using (7.22) for NBSL and (7.48) for ASL)
10: Output: Ĉm→k

shared intermediate beliefs (actions) and the knowledge of adjacency matrix. This
enhances its practicality and makes it advantageous in terms of privacy for scenarios
where only limited information is publicly accessible. For example, in a network of
Twitter users, shared beliefs (opinions) in the form of tweets (posts) and the knowledge
of who follows whom can usually be accessed by all users, while the external exposure
to information (e.g., from mass media channels distinct from Twitter) may not be
available. Therefore, the GCL algorithm can be useful for analyzing social media
content while respecting privacy. In the next result, we provide a performance bound
on the GCL algorithm.

Theorem 7.1 (Causal influence estimation). For sufficiently small combination
matrix estimation errors and δ values, the error in causal influence estimation
decreases with increasing number of samples M in expectation, namely,

E
∣∣∣∣Cm→k − Ĉm→k

∣∣∣∣ = O(1/M) (7.72)

for both NBSL and ASL under any intervention strength µm.
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Proof. See Appendix 7.E. ■

We show the practical usefulness of Alg. 7.2 by means of a real-world application to
Twitter data in Sec. 7.7.2. Furthermore, a detailed analysis of the time complexity of
the algorithms discussed in this chapter is provided in Appendix 7.F.

7.7 Numerical Simulations

7.7.1 Synthetic Data

For our numerical simulations, we study a network of K = 11 agents, interconnected
with the strongly connected graph topology in Fig. 7.4.

The agents observe data drawn from a Gaussian distribution and aim to distinguish
the true state θ◦ from H = 2 possible hypotheses. Under the true state, each agent k
observes data that follows a Gaussian distribution with zero mean and unit variance,
expressed as:

Lk(ξ|θ◦) = 1√
2π

exp
{
− 1

2ξ
2
}
. (7.73)

Under the alternative hypothesis θ′ ̸= θ◦, we assume that the data still has unit variance
for all agents, but the mean vector νk changes as shown in Table 7.1. Therefore, the
informativeness of each agent, which is equal to the KL divergence between Lk(ξ|θ◦)
and Lk(ξ|θ′), is given in Table 7.1 and is calculated as follows:

dk(θ′) = DKL

(
Lk(ξ|θ◦)||Lk(ξ|θ′)

)
= 1

2ν
2
k . (7.74)

Notably, agents 5 and 6 have no informativeness, that is, they are not able to learn the
truth without cooperating with the other agents. Initially, we assume that the agents
observe spatially independent data. In other words, the covariance matrix is an identity
matrix.

We start with the NBSL case (δ = 0, β = 1). The right panel in Fig. 7.5 shows the combi-
nation matrix that is derived from the averaging rule applied to the graph topology in
Fig. 7.4. Notice that the averaging rule generates a matrix whose entries are constant
column-wise. The left panel in Fig. 7.5 shows the matrix of bipartite causal effects
where the entry in m-th row k-th column represents CNB

m→k (see (7.59) for the explicit
formula).

Upon comparing the two heat maps in Fig. 7.5, it becomes apparent that the com-
bination matrix entries do not reveal the causal relationships directly. For example,
despite the absence of a direct connection in the combination matrix (as indicated by
0 entries), agent 11 exerts significant influence on agents 2 and 8. This phenomenon
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Directed Sparse Skewed Network of 11 Nodes

Figure 7.4: The strongly connected network
architecture used in Sec. 7.7.1. Each agent also
has a self-loop, which is omitted for visual sim-
plicity.

Agent νk dk(θ′)
1 0.8 0.32
2 0.6 0.18
3 0.2 0.02
4 0.6 0.18
5 0 0
6 0 0
7 0.4 0.08
8 0.4 0.08
9 0.2 0.02
10 0.6 0.18
11 0.8 0.32

Table 7.1: Mean νk of the observations un-
der alternative hypothesis and the corre-
sponding informativeness levels dk(θ′) for
each agent k.

highlights the importance of taking the ripple effects over a network into account.
Furthermore, the influence of agent 1 on agent 5 is notably high. Given the zero infor-
mativeness of agent 5, this finding aligns with our expectations, as low-informativeness
agents are easier to control (remember the discussion in Sec. 7.4.1). Agent 5 being a
low-informativeness agent also facilitates the propagation of influence from agent 1 to
agent 6 via agent 5. Intriguingly, despite the absence of a direct connection between
agents 1 and 6, this indirect influence is more substantial than the influence of agent
5 on agent 6. This shows that mixing of information over a network necessitates an
understanding of causal influence beyond local interactions.

Next, in Fig. 7.6, by using the matrices in Fig. 7.5, we compare the overall influences
of agents using three methods: CausalRank, AIR, and network eigenvector centrality.
Notably, the CausalRank and AIR metrics yield similar results as they both use the
bipartite causal relations matrix for causal ranking. For instance, agents 2 and 5
possess relatively low rankings in both of these metrics. The network eigenvector
centrality, on the other hand, only relies on the combination matrix, and often deviates
from these two metrics. Specifically, it assigns relatively higher scores to agents 2 and
5, and a comparatively lower score to agent 11. Moreover, an interesting distinction
between AIR and CausalRank becomes apparent when considering the case of agent 9.
We can see from the causal influence matrix in Fig. 7.5 that agent 9 has a substantial
impact on agent 11 — the most influential agent (see Fig. 7.6). Consequently, agent
9’s CausalRank score surpasses its AIR score. This can be attributed to CausalRank’s
consideration of the significance of influencing agent 11. Unlike AIR, which assigns
uniform weights, CausalRank assigns a higher weight to influences on more influential
agents.
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Figure 7.5: (Left): Bipartite causal influence matrix. (Right): Combination matrix correspond-
ing to the network topology in Fig. 7.4 formed with averaging rule.
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Figure 7.6: Ranking of agents based on their causal influence (for both CausalRank and AIR)
and their network-topology based eigenvector centrality. All ranking scores are normalized to
sum up to one.

To gain insights into the influence of the forgetting factor δ in the ASL case, we focus
our attention on agent k = 4. In Fig. 7.7, we present the average influence exerted
by agent 4’s neighbors that are 1, 2, and 3 hops away. It is clear from Fig. 7.7 that the
influence of distant agents diminishes with increasing δ. This is because increasing δ
increases the significance of recent observations, and since information from distant
agents loses its recency by the time it arrives at agent 4, this implies assigning less
importance to information from those distant agents.

In the simulations conducted so far, we have considered dose-independent causal
effects Cm→k. Figure 7.8 demonstrates the dependency of Cm→k on the intervened
belief µm(θ) for θ ̸= θ◦, as described in equation (7.24). We use m = 11 and k = 6 for
this plot, which illustrates the theoretical result presented in equation (7.24).
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Figure 7.7: Average influence on agent k = 4 from its neighborhood of 1,2 and 3 hop distances
with respect to changing values of forgetting factor δ.

Then, we fix δ = 0.1, and use the GCL algorithm (Alg. 7.2) in order to estimate the causal
effects using observational data (shared beliefs) as described in Sec. 7.6. The norm
disagreement of the causal influence matrix formed with estimates and the true causal
influences, averaged over 10 Monte Carlo simulations, is given in Fig. 7.9. Observe
that the error is decreasing as the number of samples M increases, which supports
Theorem 7.1.

Finally, we illustrate the distinction between causality and correlation by again con-
sidering agents m = 11 and k = 6. The joint distribution of their data is changed
by introducing varying levels of correlation to the observations that these agents are
receiving. Fig. 7.10 shows that as the correlation in data increases, the correlation of
the asymptotic beliefs of these agents also changes. However, the causal effects (both
the effect of agent 6 on 11 and that of agent 11 on 6) remain constant. This shows that
external observations can act as a correlation inducing confounding factor. Yet, our
method maintains consistent results, which shows its robustness against non-causal
factors.
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Figure 7.8: CNB
m→k value from (7.24) for m = 11 and k = 6 with respect to increasing interven-

tion strength µm(θ) for θ ̸= θ◦.
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Figure 7.9: Causal influence estimation error with respect to increasing number of time
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200



7.7 Numerical Simulations

0.00 0.25 0.50 0.75 1.00

The data correlation between m and k

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

m
et

ri
cs

Correlation vs Causation

Belief correlation

Cm→k
Ck→m

Figure 7.10: Correlation and causation between agents 6 and 11 with respect to varying
dependence between the streaming observations they receive.

7.7.2 Application to Social Media Data

In this section, we use the GCL algorithm (Alg. 7.2) on real-world data to assess the
influence of Twitter users. Our approach distinguishes itself from prior works [132, 137,
150, 151], which typically rely on some descriptive statistics to measure influence in
Twitter. More specifically, in our approach,

• All input requirements are publicly available, i.e., publicly shared posts (tweets)
by users and the information of who follows whom. This offers a significant
advantage in terms of privacy, as we do not require any private feature about
users.

• Going beyond providing a mere ranking of influential users, we also quantify the
bipartite causal relations.

• We leverage natural language processing tools to extract meaningful information
from the content of users’ posts to form belief inputs, rather than relying on
traditional simpler metrics such as the posting frequency. In contrast to the
binary treatment approach, adopting the continuous treatment metric in (7.2)
for our causality definition enables us to allow for the use of continuous variables
such as opinions and sentiment scores.

Note that we utilize Alg. 7.2 for the NBSL model (δ = 0, β = 1) as-is, without employing
additional techniques to enhance its accuracy for real-world modeling. Our intention
is to demonstrate the practical usefulness of our algorithm rather than striving to
develop the most advanced practical algorithm available.

Network structure. Performance evaluation of the influence estimation algorithms in
real-world social networks is challenging due to the absence of ground truth regarding
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influential users. There is also no ground truth reference for the confidence scores
assigned by users to one another (i.e., combination weights) or for the information
the users are obtaining from out-of-network resources (i.e., informativeness levels).
Therefore, we utilize the framework from [137], namely, a sub-network consisting of
K = 20 Twitter users, as illustrated in Fig. 7.11. Notably, this sub-network incorporates
Elon Musk, a public figure with 140 million followers across Twitter, who is reportedly
influential on cryptocurrency prices [152]. All users within the sub-network actively
share posts related to cryptocurrencies and bitcoin-related topics. Furthermore, one
user, who we will refer to as User 2, has 1,167 followers on Twitter and is notable for
being followed by Elon Musk, as depicted in Fig. 7.11. Importantly, the sub-network
exhibits a strong connectivity among its members.

User 2

Elon
Musk

Figure 7.11: Sampled Twitter sub-network
with K = 20 users. An arrow from a user k to
ℓ means that user ℓ is following user k. The
connectivity density of the graph is approxi-
mately 0.24.

Opinion processing. The Twitter API is
leveraged in order to collect the posts
(tweets) of users between 01.01.2017 and
01.05.2022 relevant to crypto-currency dis-
cussions, using query keywords such as
"coin", "bitcoin", or "crypto-currency".
To quantify the contextual information of
these posts to form the input beliefs, sen-
timent analysis based on neural language
models [153] is utilized. We refer to Fig. 7.12
for some illustrative examples. The senti-
ment scores obtained through natural lan-
guage processing ranges from 0 to 1, signify-
ing the degree of positive attitude towards
Bitcoin. These scores correspond to the
beliefs of the agents on the hypothesis of
“Bitcoin is good/useful”. We consider two
hypotheses, i.e., H = 2, where the counter-
hypothesis is “Bitcoin is bad/harmful”.

We then integrated these beliefs obtained
from users’ tweets, along with the sub-network topology of who follows whom, into
Alg. 7.2. Specifically, we employed NBSL modeling, i.e., δ = 0 and β = 1. We binned
the sequence of data to days, that is, each i in our algorithms corresponds to one
day. Combination weights were estimated using an averaging rule on the sub-network
topology.

Bipartite causality. Inserting the observational input into Alg. 7.2, the resulting av-
erage causal derivative effect matrix is shown in Fig. 7.13 in the form of a heat map.
To facilitate comparison, we also include the adjacency matrix, which describes the
connections between users. In these plots, the indices 1 and 2 correspond to specific

202



7.7 Numerical Simulations

0.97

0.83

0.12

Figure 7.12: Sample tweets from the users in the sub-network. The number on the upper RHS
quantifies the positive attitude towards Bitcoin.
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Figure 7.13: (Left): Bipartite causal influence matrix. (Right): Adjacency matrix corresponding
to the sub-network topology in Fig. 7.11.
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Figure 7.14: Ranking of agents based on their causal influence and their corresponding
network eigenvector centrality. Both ranking scores are summing up to one.

users: Elon Musk (User 1) and User 2, respectively.

Upon observing the heat map, it is evident that Elon Musk holds significant influence
over all other users, as indicated by the high values in the 1th row, which aligns with our
expectations. However, notice that the adjacency matrix does not precisely mirror the
causal relationships. For instance, User 2 is followed by Elon Musk, yet their influence
on Elon Musk, as depicted in the heat map, is relatively low. On the other hand, User
14 exerts a substantial impact on User 2, despite not being directly followed by User
2. This fact may arise from the fact that User 14 holds one of the highest influences
on Elon Musk (User 1) among all the users in this particular sub-network. These
observations highlight the fact that the nature of influence dynamics within real-world
social networks cannot simply be explained with direct follower relations.

Causal impact ranking. Once the influence matrix is determined, we apply the Causal-
Rank algorithm (Alg. 7.1) to rank the agents based on their overall influence within the
sub-network. The resulting plot is depicted in Fig. 7.14. Notably, Elon Musk emerges
as the most influential agent, aligning with our initial expectations.

However, an intriguing observation can be made regarding User 2. Despite having a
high eigenvector centrality, their causal impact score appears relatively small. This
phenomenon arises because the causal effect is not solely determined by network
centrality but also takes into account the informativeness of the agents. For instance,
if a user primarily retweets (reposts) what their neighbors are tweeting, such users
tend to possess low informativeness, decreasing their causal impact score. Thus, even
though User 2 may have a high centrality within the considered sub-network primarily
due to being followed by Elon Musk, their causal influence on their neighbors is low
and does not propagate to other users, leading to a relatively small causal impact.
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7.8 Concluding Remarks

In this chapter, we analyzed causal influences among agents that are connected over
a network and whose interactions occur over time. Using social learning models,
we derived expressions for the causal relationships between pairs of agents. These
expressions offer key insights into the diffusion of influences across a social network.
We also proposed the CausalRank algorithm for ranking the overall influence of agents,
which allows discovering highly influential actors within a network. Furthermore, to
enhance the practical usage of our results, we proposed the graph causality learning
algorithm (GCL) that learns the necessary model parameters from raw observational
data in order to estimate the causal effects. We demonstrated how GCL can be applied
in practice through an application to real Twitter data.

The social learning models we considered in this work are useful for both modeling
opinion formation over social networks as well as for designing distributed decision-
making systems. Therefore, potential applications range from the analysis of human
social networks, such as those on social media platforms, to cooperative decision-
making processes of socially intelligent machines like networks of drones or sensors.
In addition to these, our results can be useful for applications that involve time-series
networked interactions, since they provide insights on the diffusion of influence across
graphs.

7.A Connection of (7.28) to Average Causal Derivative Effect

In this appendix, we demonstrate how definition (7.28) for the causal effect summary
CNB
m→k can also be interpreted as the increment in causal effect CNB

m→k after an infinites-
imal change in the intervention strength µm(θ). In the literature, this is referred to as
the average causal derivative effect, as it computes the derivative in causal effect with
respect to the intervention strength [148, Chapter 6]. However, a simple derivative of
CNB
m→k with respect to µm fails to produce a dose-independent summary, given that

CNB
m→k is not a linear function of µm, which can be seen from (7.58).

We introduce the function

f(CNB
m→k) ≜

CNB
m→k

1− CNB
m→k

(7.58)=
∑

θ∈Θ\{θ◦}

µm(θ)
µm(θ◦) exp

{
−
[(

(I −RT)−1 − I
)
d−m(θ)

]
k

}
, (7.75)

and notice that f(CNB
m→k) ∈ [0,∞) is a linear function of the intervened belief ratio
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vector sm, defined as

sm(θ) ≜ µm(θ)
µm(θ◦) , sm ≜ [sm(θ1), . . . , sm(θH)]T. (7.76)

Here, the vector sm quantifies the amount of relative misinformation the intervention
µm produces. Therefore, the gradient

∇smf(CNB
m→k) =

∑
θ∈Θ\{θ◦}

∂f(CNB
m→k)

∂sm(θ)
(7.75)=

∑
θ∈Θ\{θ◦}

exp
{
−
[(

(I −RT)−1 − I
)
d−m(θ)

]
k

}
(7.77)

is independent of the intervention dose µm, and satisfies

∇smf(CNB
m→k) = f(CNB

m→k). (7.78)

In other words, to find the gradient of f(CNB
m→k) with respect to sm, setting

µm(θ)
µm(θ◦) = 1 =⇒ µm(θ) = 1

H
, ∀θ ∈ Θ (7.79)

in (7.75) as it was done in (7.28) for findingCNB
m→k, is sufficient. The reason we are inter-

ested in∇smf(CNB
m→k) is the following. Notice from (7.75) that f(CNB

m→k) is a monotonic
increasing function of CNB

m→k. Also, sm(θ) is clearly a monotonic function of µm(θ) —
see (7.76). Therefore,∇smf(CNB

m→k) can be considered as some proxy for the derivative
of the causal effect CNB

m→k with respect to µm(θ). Consequently, we conclude that set-
ting µm(θ) as a uniform belief in CNB

m→k effectively parallels finding the average causal
derivative effect.

7.B Proof of (7.48)

Theorem 2.3, which establishes convergence in distribution for the pre-intervention
ASL case does not require the strongly connected graph assumption. In fact, it holds
as long as the observations that the agents receive are i.i.d. over time. This condition
is satisfied under the post-intervention case as well. Hence, the log-beliefs under
intervention converge in distribution, i.e.,

λ̃i(θ)
dist.−−→β

∞∑
j=1

(1− δ)j−1(ÃT)jx̃j(θ). (7.80)

Then, following the same arguments from Corollary 2.1, the limiting expectation
becomes

λ̃∞(θ) = β

1− δ

(
(I − (1− δ)ÃT)−1 − I

)
d̃(θ) (7.81)
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where we define the vector of expected LLRs and the vector of limiting log-belief ratio
expectations from across the network:

d̃(θ) ≜
[
δ

β
log µ1(θ◦)

µ1(θ) , d2(θ), . . . , dK(θ)
]T
, λ̃∞(θ) ≜

[
log µ1(θ◦)

µ1(θ) , λ2,∞(θ), . . . , λK,∞(θ)
]T
.

(7.82)
Using the block matrix form of Ã from (7.11), we have

I − (1− δ)ÃT =
[

δ 0
−(1− δ)r I − (1− δ)RT

]
, (7.83)

which implies

(I − (1− δ)ÃT)−1 =


1
δ

0

1− δ
δ

(I − (1− δ)RT)−1r (I − (1− δ)RT)−1

 . (7.84)

Inserting this into (7.81), we arrive at

λ̃∞(θ) = β

1− δ


1− δ
δ

0

1− δ
δ

(I − (1− δ)RT)−1r (I − (1− δ)RT)−1 − I



δ

β
log µ1(θ◦)

µ1(θ)

d−m(θ)


(7.85)

which again verifies that λ̃1,∞(θ) = log µ1(θ◦)
µ1(θ) and proves relation (7.48).

7.C Proof of (7.52)

Recall from (7.29)–(7.30) that for this fully connected network:

A = v1T
K , R = v−m1

T
K−1, r = v11K−1. (7.86)
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As a result, it holds that

(I − (1− δ)RT)−1 =
∞∑
i=0

(1− δ)i(RT)i

(7.32)= I + (1− δ)1K−1v
T
−m + (1− δ)2(1− v1)1K−1v

T
−m + . . .

= I + (1− δ)
( ∞∑
i=0

(1− δ)i(1− v1)i
)
1K−1v

T
−m

= I + 1− δ
1− (1− δ)(1− v1)1K−1v

T
−m. (7.87)

This implies that

(I − (1− δ)RT)−1r =
(
I + 1− δ

1− (1− δ)(1− v1)1K−1v
T
−m

)
v11K−1

(a)= v1

(
1K−1 + 1− δ

1− (1− δ)(1− v1)(1− v1)1K−1

)
= v1

1− (1− δ)(1− v1)1K−1 (7.88)

where (a) follows from the fact that
∑K
ℓ=2 vℓ = 1− v1. Eq. (7.87) also implies that

(
(I − (1− δ)RT)−1 − I

)
d−m(θ) = 1− δ

1− (1− δ)(1− v1)

( K∑
ℓ=2

vℓdℓ(θ)
)
1K−1 (7.89)

Incorporating (7.88) and (7.89) into (7.48) concludes the proof.

7.D Proof of (7.54)

Recall expressions (7.38) and (7.39) for A and R in the ring special case. Also observe
that

r =
[
1− α, 0, . . . , 0

]T
. (7.90)

Accordingly, it holds that

(I−(1−δ)RT) =



1− (1− δ)α 0 · · · 0 0
−(1− δ)(1− α) 1− (1− δ)α · · · 0 0

...
...

. . .
...

...
0 0 · · · 1− (1− δ)α 0
0 0 · · · −(1− δ)(1− α) 1− (1− δ)α


(7.91)

208



7.E Proof of Theorem 7.1

The inverse of this Toeplitz matrix is given by the following lower diagonal matrix:

(I − (1− δ)RT)−1 =

1
1− (1− δ)α 0 · · · 0 0

(1− δ)(1− α)
(1− (1− δ)α)2

1
1− (1− δ)α · · · 0 0

...
...

. . .
...

...

(1− δ)K−3(1− α)K−3

(1− (1− δ)α)K−2
(1− δ)K−4(1− α)K−4

(1− (1− δ)α)K−3 · · · 1
1− (1− δ)α 0

(1− δ)K−2(1− α)K−2

(1− (1− δ)α)K−1
(1− δ)K−3(1− α)K−3

(1− (1− δ)α)K−2 · · · (1− δ)(1− α)
(1− (1− δ)α)2

1
1− (1− δ)α



.

(7.92)

Then, the matrix-vector products in the general formula (7.48) become

(I − (1− δ)RT)−1r =

 1− α
1− (1− δ)α,

(1− δ)(1− α)2

(1− (1− δ)α)2 , . . . ,
(1− δ)K−2(1− α)K−1

(1− (1− δ)α)K−1

T

(7.93)
and

(
(I−(1−δ)RT)−1−I

)
d−m(θ) =



α(1− δ)
1− (1− δ)αd2(θ)

α(1− δ)
1− (1− δ)αd3(θ) + (1− α)(1− δ)

(1− (1− δ)α)2d2(θ)

...

α(1− δ)
1− (1− δ)αdK(θ) + · · ·+ (1− α)K−2(1− δ)K−2

(1− (1− δ)α)K−1 d2(θ)


(7.94)

Inserting these into the general expression (7.48) concludes the proof.

7.E Proof of Theorem 7.1

If we denote the error in estimating the combination matrix by E ≜ Â − A, then
combining (7.65) and (7.69) yields:

D̂ = 1
βM

M∑
i=1

(
βXi − (1− δ)ETΛi−1

)
. (7.95)
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Therefore, the error in informativeness can be decomposed as

E∥D̂ −D∥2F = 1
β2M2E

∥∥∥∥ M∑
i=1

β(Xi −D)− (1− δ)ETΛi−1

∥∥∥∥2

F

= 1
M2E

∥∥∥∥ M∑
i=1

(Xi −D)
∥∥∥∥2

F
+ (1− δ)2

β2M2 E
∥∥∥∥ M∑
i=1

ETΛi−1

∥∥∥∥2

F

− 2(1− δ)
βM2 E

Tr
( M∑
i=1

(Xi −D)
)( M∑

i=1
(ETΛi−1)

)T
 (7.96)

where ∥ · ∥F denotes the Frobenius norm and D denotes the informativeness matrix
with entries corresponding to [D]kj ≜ dk(θj). Here, (i) because of the i.i.d. assumption
on data over time, and (ii) under sufficiently small δ values that keep the probability
of the event “θ̂◦ ̸= θ◦” sufficiently small with increasing M (see Theorem 2.3 and also
refer to [14]), the first term satisfies

1
M2E

∥∥∥∥ M∑
i=1

(Xi −D)
∥∥∥∥2

F
= 1
M

E
∥∥∥Xi −D

∥∥∥2

F
+ 2
M2

M∑
i=1

∑
j<i

ETr
[(

Xi −D
)(

Xj −D
)T]

= 1
M

Tr(R), (7.97)

where we also have defined the covariance matrix of the log-likelihood ratios

R ≜ E
(

(Xi −D)(Xi −D)T
)
. (7.98)

Moreover, expanding recursion (7.65), it holds that

M∑
i=1

Λi =
M∑
i=1

(1− δ)i(Ai)TΛ0 + β
M∑
i=1

i−1∑
j=0

(1− δ)j(Aj)TXi−j . (7.99)

Furthermore, by the triangle inequality, it follows that

∥∥∥∥ M∑
i=1

Λi

∥∥∥∥
F
≤
∥∥∥∥ M∑
i=1

(1− δ)i(Ai)TΛ0

∥∥∥∥
F

+ β

∥∥∥∥ M∑
i=1

i−1∑
j=0

(1− δ)j(Aj)TXi−j

∥∥∥∥
F

= O

(
min

{
M2,

M

δ

})
. (7.100)

Hence, the second term in (7.96) satisfies

(1− δ)2

β2M2 E
∥∥∥∥ M∑
i=1

ETΛi−1

∥∥∥∥2

F
= O

 ∥E∥2 min
{
M2,

1
δ2

} (7.101)
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and the third term in (7.96) satisfies

(1− δ)
βM2 E

Tr
( M∑
i=1

(Xi −D)
)( M∑

i=1
(ETΛi−1)

)T
 = O

∥E∥
M

min
{
M,

1
δ

} (7.102)

Consequently, for sufficiently small combination matrix errors, namely,

E = o

(
max

{
M−3/2, δM−1/2

})
, (7.103)

it holds that
E∥D̂ −D∥2F ≤

1
M

Tr(R) + o(1/M). (7.104)

Next, recall (7.48) which establishes log-belief ratios under interventions for ASL. For
the first term in (7.48), the matrix estimation error E implies errors for the matrix
components R and r that are also proportional to E, which means

(I − (1− δ)(R+O(E))T)−1(r +O(E))

= (I − (1− δ)RT)−1
(
I −

(
I − (1− δ)RT

)−1
(1− δ)O(E)

)−1(
r +O(E)

)
(a)= (I − (1− δ)RT)−1

(
I + (1− δ)O(E)

)(
r +O(E)

)
=
(

(I − (1− δ)RT)−1 + (1− δ)O(E)
)(
r +O(E)

)
= (I − (1− δ)RT)−1r +O(E) (7.105)

where (a) holds as long as

E = o
(
(I − (1− δ)RT)−1

)
= o

(
1/(1− (1− δ)ρ(R))

)
= o

(
1/
(
1− ρ(R) + δρ(R)

))
= o

(
1/(1− ρ(R))

)
(7.106)

In (7.106) we assume that the graph topology is fixed (i.e., it is not changing with
decreasing δ). By the same arguments, an error in the matrix expression of the second
term of (7.48) implies((

I − (1− δ)(R+O(E))T
)−1
−I
)

=
(

(I − (1− δ)RT)−1 + (1− δ)O(E)− I
)

=
(

(I − (1− δ)RT)−1 − I
)

+O(E), (7.107)
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and an error in the matrix expression of the pre-intervention case of (2.40) implies(
(I − (1− δ)ÂT)−1 − I

)
=
(

(I − (1− δ)(A+ E)T)−1 − I
)

=
(

(I − (1− δ)AT)−1 − I
)

+O(E). (7.108)

Therefore, considering the fact that true causal effect can be written as

CASL
m→k

= µk,∞(θ◦)− µ̃k,∞(θ◦)
(7.3)= 1

1 +
∑
θ∈Θ\{θ◦} exp{−λk,∞(θ)} −

1
1 +

∑
θ∈Θ\{θ◦} exp{−λ̃k,∞(θ)}

(2.40),(7.48)= 1

1 +
∑
θ∈Θ\{θ◦} exp

−
[

β

1− δ

(
(I − (1− δ)AT)−1 − I

)
d(θ)

]
k


− 1

1 +
∑

θ∈Θ\{θ◦}

(
µm(θ)
µm(θ◦)

)[(I−(1−δ)RT)−1r]k
exp

−
[

β

1− δ

(
(I − (1− δ)RT)−1−I

)
d−m(θ)

]
k


,

(7.109)

by (7.105), (7.107), and (7.108), the causal effect estimate satisfies

ĈASL
m→k

= 1

1 +
∑
θ∈Θ\{θ◦} exp

−
[

β

1− δ

(
(I − (1− δ)AT)−1 − I +O(E)

)
d̂(θ)

]
k


− 1

1 +
∑

θ∈Θ\{θ◦}

(
µm(θ)
µm(θ◦)

)[(I−(1−δ)RT)−1r]k+O(E)
exp

−
[

β

1− δ

(
(I − (1− δ)RT)−1−I +O(E)

)
d̂−m(θ)

]
k


(7.110)

Here, d̂(θ) and d̂−m(θ) are the estimates for d(θ) and d−m(θ) respectively, which can be
formed from informativeness estimation matrix D̂. In addition, the scalar function g
with vector argument λ (over Θ \ {θ◦}) defined as

g(λ) ≜ 1
1 +

∑
θ∈Θ\{θ◦}

exp{−λ(θ)} (7.111)
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has the partial derivatives

∂g(λ)
∂λ(θ) = exp{−λ(θ)}(

1 +
∑

θ∈Θ\{θ◦}
exp{−λ(θ)}

)2 , (7.112)

which implies that

∥∇g(λ)∥1 =
∑

θ∈Θ\{θ◦}

∣∣∣∣∂g(λ)
∂λ(θ)

∣∣∣∣
=

∑
θ∈Θ\{θ◦}

exp{−λ(θ)}(
1 +

∑
θ∈Θ\{θ◦}

exp{−λ(θ)}
)2 ≤ 1 (7.113)

By the mean-value theorem, this further implies that for any two vectors λ1 and λ2,
there exists a vector λ3 such that

g(λ1)− g(λ2) = ∇g(λ3)T(λ1 − λ2). (7.114)

Then, using Hölder’s inequality on (7.114) yields that∣∣∣∣g(λ1)− g(λ2)
∣∣∣∣ ≤ ∥∥∥∇g(λ3)

∥∥∥
1

∥∥∥λ1 − λ2
∥∥∥

∞

(7.113)
≤

∥∥∥λ1 − λ2
∥∥∥

∞
. (7.115)

Note that the norm ∥ · ∥∞ chooses the absolute maximum over all arguments induced
from different hypotheses θ ∈ Θ \ {θ◦}. If we apply (7.115) to the differences of first
and second terms in (7.109) and (7.110), we get∣∣∣∣CASL

m→k − ĈASL
m→k

∣∣∣∣
≤ β

1− δ

∥∥∥∥∥∥
[(

(I − (1− δ)AT)−1 − I
)
d(θ)−

(
(I − (1− δ)AT)−1 − I +O(E)

)
d̂(θ)

]
k

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥O(E) log µm(θ)
µm(θ◦) + β

1− δ

[(
(I − (1− δ)RT)−1−I

)
d−m(θ)

−
(

(I − (1− δ)RT)−1−I +O(E)
)
d̂−m(θ)

]
k

∥∥∥∥∥∥
∞

≤ β

1− δ

∥∥∥∥∥∥
[(

(I − (1− δ)AT)−1 − I
)(

d(θ)− d̂(θ)
)

+O(E)d̂(θ)
]
k

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥O(E) + β

1− δ

[(
(I − (1− δ)RT)−1−I

)(
d−m(θ)− d̂−m(θ)

)
−O(E)d̂−m(θ)

]
k

∥∥∥∥∥∥
∞
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(a)
≤ β

1− δ

∥∥∥∥∥∥
[(

(I − (1− δ)AT)−1 − I
)(

d(θ)− d̂(θ)
)]

k

∥∥∥∥∥∥
∞

+ β

1− δ

∥∥∥∥((I − (1− δ)RT)−1 − I
)(

d−m(θ)− d̂−m(θ)
)∥∥∥∥

∞
+O(E)

(b)
≤ β

1− δ

∥∥∥∥(I − (1− δ)AT)−1 − I
∥∥∥∥

∞

∥∥∥∥d(θ)− d̂(θ)
∥∥∥∥

∞

+ β

1− δ

∥∥∥∥(I − (1− δ)RT)−1 − I
∥∥∥∥

∞

∥∥∥∥d−m(θ)− d̂−m(θ)
∥∥∥∥

∞
+O(E) (7.116)

where (a) follows from the triangle inequality, and (b) follows from the sub-multiplicity
of the matrix norms. Finally, since (7.104) implies

E
∥∥∥∥d(θ)− d̂(θ)

∥∥∥∥
∞
≤ 1
M

Tr(R) + o(1/M) (7.117)

and
E
∥∥∥∥d−m(θ)− d̂−m(θ)

∥∥∥∥
∞
≤ 1
M

Tr(R) + o(1/M), (7.118)

taking the expectation of both sides in (7.116) and incorporating (7.117) and (7.118)
concludes that

E
∣∣∣∣CASL

m→k − ĈASL
m→k

∣∣∣∣ = O(1/M). (7.119)

In the case of NBSL, the only source of disagreement between CNB
m→k and ĈNB

m→k is at
post-intervention, since pre-intervention steady state beliefs are fixed and identical
(see (7.8)), thus their difference equals 0. Also, the proof for the post-intervention
difference proceeds along the same lines as the ASL case above.

7.F Discussion of Computational Complexity

First, assuming that the matrix A and the informativeness vector d(θ) for each hy-
pothesis are known, the computational tasks for calculating the derived causal effect
expressions (7.22) and (7.48) involve the following:

• Calculating (I − (1 − δ)RT)−1 for one agent can be achieved in O(K3) time
with naive matrix operations, where K is the size of the network. Therefore,
performing this operation for all agents in the network results in O(K4) worst
case complexity.

• For the matrix-vector multiplications, the complexity for each agent is O(K2),
which leads to a complexity of O(K3) when we consider all K agents.

• The computation to find the eigenvectors of the K ×K causal influence matrix
also involves a computation time of O(K3).
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Therefore, the total computational complexity with known A and d(θ) is O(K4). Note
that if one uses computationally efficient algorithms for matrix multiplication, such
as the Strassen’s algorithm [154], the complexity can potentially be reduced down to
O(Kw), where 3 < w < 4.

If, however, A and d(θ) need to be estimated first as in Alg. 7.2, we need to perform the
following additional operations:

• Estimating A, based on the averaging rule, is O(K) or O(K2) depending on the
utilized graph data structure.

• Estimating d(θ) involves learning from the average over M observations. Here,
each computation involves a matrix multiplication between A and Λ (i.e., the
observational data) which has O(K2) complexity.

Consequently, considering causal discovery from observational data phase, the total
computational complexity for causal ranking of the network is O(K4 +M ·K2).
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8 Causality under Asynchronicity

8.1 Introduction1

In this chapter, we extend the causal influence concept from the previous chapter.
Namely, we build upon the collaborative decision-making framework of [59], which
involves heterogeneous agents exchanging beliefs (or soft-decisions) through a fusion
center (FC) based on streaming observations. Furthermore, to better capture the real-
world conditions, we will incorporate two asynchronicity scenarios to this framework;
the scenarios differ in agent participation patterns and in FC policies.

8.1.1 Contributions

In a manner similar to the discussion in the previous chapter, by applying hypothetical
interventions [139, 148] to our model, we implement a method to calculate causal
impact scores for each agent’s contribution to the joint decision. We also provide a
theoretical analysis of participation patterns, FC policies, and data distribution on
the decision-making process. We illustrate our theoretical findings with numerical
simulations and also apply our methods to real-world data from a multi-camera crowd-
size estimation application [157].

8.2 Problem Setting

Following the notation from the previous chapter, we use∼ to denote the counterparts
of variables after an intervention (e.g., λ̃ represents the variable λ after an intervention).

1The material in this chapter is based on [155, 156].
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8.2.1 Two Asynchronous Scenarios

Asynchronous behavior is common in many real-world distributed systems, and is
particularly relevant for ad-hoc networks where time scheduling beforehand may not
be plausible. To that end, we consider two scenarios that are distinct based on the
symmetry of communication between the agents and the FC. For both scenarios, we
use the Bernoulli variable qk,i (with parameter pk) to indicate if agent k is sharing its
intermediate beliefψk,i with the server at time i, namely,

qk,i =

1, with probability pk

0, otherwise
. (8.1)

We assume the process {qk,i} is independent and identically distributed (i.i.d.) over
time and independent over space.

Asymmetric communication

There can be instances when agents, despite being active, do not transmit information
to the FC and remain idle in terms of data sharing. This non-engagement can be due to
various factors, such as the need to conserve energy, particularly important for battery-
operated agents where excessive transmission can lead to rapid battery depletion.
Other reasons might include non-informative soft decisions, or the lack of significant
changes in intermediate statistics since the previous transmission. However, these
agents can keep receiving updates from the server. A possible reason for this disparity
is that the uplink cost (from agent to server) is typically higher than the downlink
cost (from server to agent). For instance, the downlink could be broadcast, i.e., the
same message is transmitted to all agents without the need to exchange information
separately with each individual agent.

In this case, the FC can fill the belief components of missing agents with its own prior
while aggregating information. Therefore, the combination step at the server side
changes to

µi(θ) ∝
K∏
k=1

(
ψ
qk,i

k,i (θ)µ1−qk,i

i−1 (θ)
)vk

. (8.2)

Nevertheless, agents continue to utilize the beliefs received from the server locally as in
(2.7). The procedure under asymmetric asynchronicity is summarized in Algorithm 8.1.

It is worth noting the parallel between this scenario and the traditional distributed
detection strategies [12, 158, 159]. Since the server knows the previous combined
belief µi−1, the action of sharing intermediate beliefs {ψk,i} by agents is essentially
equivalent to them sharing the observation likelihoods {Lk(ξk,i|θ)}. Similarly, nodes
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8.2 Problem Setting

(e.g., sensors) relay a sufficient statistics such as their local likelihoods or likelihood
ratios to the FC in [12, 158, 159]. The difference is that in those works, the FC does not
communicate any information back to the nodes.

Algorithm 8.1 Asymmetric communication

1: set initial prior to µ0(θ) > 0, ∀θ ∈ Θ and ∀k
2: while i ≥ 1 do
3: for each agent k = 1, 2, . . . ,K do
4: receive private observation ξk,i
5: adapt to obtain intermediate belief:

ψk,i(θ) ∝ Lk(ξk,i|θ)µi−1(θ) (8.3)

6: send the intermediate belief to FC if qk,i = 1 (with probability pk)
7: end for
8: FC combines the received beliefs and its own prior:

µi(θ) ∝
K∏
k=1

(
ψ
qk,i

k,i (θ)µ1−qk,i

i−1 (θ)
)vk

(8.4)

9: FC broadcasts combined belief µi to all agents
10: i← i+ 1
11: end while

Symmetric communication

Another possibility is that an agent does not receive any update from the server if that
agent has not transmitted information to the central processor at that time instant. In
other words, the absence of communication is reciprocal. This situation could arise in
cases where the quality of the connection is not adequate for reliable communication.
Alternatively, for various reasons, a server might strategically choose not to update
agents that do not contribute information. By doing so, it can incentivize data sharing
and promote a give-and-take dynamics. In this scenario, the combination step at the
server side is given by (8.2), whereas the adaptation step at the agents becomes

ψk,i(θ) ∝

Lk(ξk,i|θ)µi−1(θ), if qk,i−1 = 1
Lk(ξk,i|θ)ψk,i−1(θ), if qk,i−1 = 0

. (8.5)

The rationale behind (8.5) is as follows. If agent k has shared information with the
server (i.e., qk,i−1 = 1) at time i − 1, the server returns the combined belief µi−1 to
that agent. On the other hand, if the agent has not participated in the information
exchange (i.e., qk,i−1 = 0), then the server does not provide the updated belief and the
agent resorts to its own beliefψk,i−1 as a prior for the update at the next time instant i.
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The procedure under symmetric asynchronicity is summarized in Algorithm 8.2.

Algorithm 8.2 Symmetric communication

1: set initial prior to µ0(θ) > 0, ∀θ ∈ Θ and ∀k
2: while i ≥ 1 do
3: for each agent k = 1, 2, . . . ,K do
4: receive private observation ξk,i
5: adapt to obtain intermediate belief:

ψk,i(θ) ∝
{
Lk(ξk,i|θ)µi−1(θ), if qk,i−1 = 1
Lk(ξk,i|θ)ψk,i−1(θ), if qk,i−1 = 0

(8.6)

6: send the intermediate belief to FC if qk,i = 1 (with probability pk)
7: end for
8: FC combines the received beliefs and its own prior:

µi(θ) ∝
K∏
k=1

(
ψ
qk,i

k,i (θ)µ1−qk,i

i−1 (θ)
)vk

(8.7)

9: FC sends µi only to agents that have participated in the cooperation in the
current round (i.e., qk,i = 1)

10: i← i+ 1
11: end while

8.3 Causal Influence

We extend the causal effect definition from the previous chapter. The main motivation
for the definition is that the influence of an agent m on the collective decision should
be proportional to the “amount” by which the outcome changes when this agent is
intervened upon. In other words, the alteration of the outcome under a manipulation
on the agent quantifies the causal influence. To this end, when an intervention occurs
on agent m, we decouple its belief ψm,i from other beliefs and observations and fix
it at some constant pmf, say, ψm,i = µm — see Fig. 8.1 for a representation of an
intervention on Fig. 2.2.

As an illustration, recall our recurring example on cooperative vehicular networks.
Consider a scenario in which these vehicles navigate a dry road while receiving noisy
data from their sensors. To measure the causal effect of an individual vehicle on the
collective decision, we can ask the following question: How would the group’s decision
on road conditions change if a single vehicle, despite the actual conditions and data
from other vehicles, consistently reported that the road is icy? A significant difference
in the collective decision would imply an influential role for that vehicle. Conversely,
a minimal alteration suggests a negligible causal effect. Furthermore, this effect is
a causal effect since the hypothetical intervention we consider directly targets the
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do( m,i := µm)

Figure 8.1: Visual representation of a hypothetical intervention do(ψm,i := µm) on the graph-
ical model in Fig. 8.1. Agent m keeps sending information to the server with probability pm,
however, its belief is now fixed and is not dependent on any other variable.

agent. Namely, it is irrespective of other environmental factors and vehicles that might
otherwise induce non-causal correlations.

We establish in Theorem 8.1 that in the absence of any intervention, the belief vector
µi converges to a steady-state value µ∞ that places a probability value of 1 on the true
hypothesis θ◦ as i → ∞. When an intervention occurs at agent m, the steady-state
belief vector will be denoted by µ̃∞. As such, we can quantify the causal impact of
agent m on the joint decision by using the difference:

Cm ≜ 1− µ̃∞(θ◦). (8.8)

Expression (8.8) measures the expected shift in the steady-state belief on the true
hypothesis θ◦ due to an intervention on agent m. Note that as in previous chapter, we
keep expressing the belief µ̃∞(θ◦) in the form:

µ̃∞(θ◦) ≜ 1
1 +

∑
θ ̸=θ◦

exp{−λ̃∞(θ)}
. (8.9)

The variable λ̃∞(θ) is defined as follows. First, we introduce the notation

λ∞(θ) ≜ lim
i→∞

E[λi(θ)] (8.10)

to represent the expected log-belief ratio in the limit with the variables λi(θ) defined
by

λi(θ) ≜ log µi(θ
◦)

µi(θ)
. (8.11)

Then, we recall that we use∼ to denote interventional counterparts of these variables,
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which means

λ̃i(θ) ≜ log µ̃i(θ
◦)

µ̃i(θ)
(8.12)

represents the log-belief ratio under an intervention. Therefore, the variable

λ̃∞(θ) ≜ lim
i→∞

E[λ̃i(θ)] (8.13)

represents the expected asymptotic log-belief ratio under an intervention.

8.4 Theoretical Results

Theorem 8.1 (Pre-intervention). For the synchronous as well as the symmetric
and asymmetric asynchronous communication protocols discussed in Sec. 8.2, the
belief vector µi converges to a steady-state probability mass function that places a
value of 1 on the true hypothesis θ◦ almost surely:

lim
i→∞

µi(θ◦) = 1 with probability 1. (8.14)

Proof. See Appendix 8.A. ■

The causal influence of an agent m on the joint decision is characterized by the shift of
the overall decisions between pre and post-interventions. Therefore, we proceed to
examine the beliefs under an intervention on agentm. We first recall the causal impact
result (7.34) from previous chapter for the sake of completeness.

Theorem 8.2 (Synchronous collaboration). Under synchronous collaboration,
the expected log-belief ratio under intervention is given by

λ̃∞(θ) = 1
vm

∑
k ̸=m

vkdk(θ) + log µm(θ◦)
µm(θ) (8.15)

Therefore, by (8.8), the causal impact of agent m on the joint decision is

Cm=1− 1

1 +
∑
θ ̸=θ◦

µm(θ)
µm(θ◦) exp

{
− 1
vm

∑
k ̸=m

vkdk(θ)
} (8.16)

Equations (8.15) and (8.16) imply that

• An increase in the confidence vm by the fusion center increases the causal impact
of agent m.
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• Increasing the informativeness and confidence weights of the other agents de-
creases the impact of agent m.

Also, observe that (8.15) and (8.16) are dependent on the intervention strength µm.
Next, we consider the causal influences for the asynchronous scenarios we have intro-
duced in Sec. 8.2.1.

Theorem 8.3 (Asymmetric communication). Under the asymmetric communi-
cation protocol described in Sec. 8.2.1, the expected log-belief ratio under inter-
vention is given by

λ̃∞(θ) = 1
vm

∑
k ̸=m

vkpkdk(θ) + pm log µm(θ◦)
µm(θ) (8.17)

This implies by (8.8) that the causal effect of agent m on the joint decision is given
by

Cm=1− 1

1 +
∑
θ ̸=θ◦

(
µm(θ)
µm(θ◦)

)pm

exp
{
− 1
vm

∑
k ̸=m

vkpkdk(θ)
} (8.18)

Proof. See Appendix 8.B. ■

Notice in Theorem 8.3 that as pk approaches 1 for each agent k, i.e., when all agents
participate synchronously at each iteration, we recover Theorem 8.2. Also notice
that the essential difference from the synchronous scenario is the replacement of
confidence weights vk by vkpk. This is intuitive since more participation by an agent is
expected to increase its influence on the joint decision, as if it had a higher confidence
from the server. Similarly, more participation by the other agents decreases the overall
impact of an agent on the joint decision, as the “relative” participation of the agent is
decreasing compared to the others.

Theorem 8.4 (Symmetric communication). Under the symmetric communica-
tion protocol described in Sec. 8.2.1 the expected log-belief ratio under intervention
is given by

λ̃∞(θ) = 1
vmpm

∑
k ̸=m

vkdk(θ)
1− vk(1− pk)

+ log µm(θ◦)
µm(θ) (8.19)

This implies by (8.8) that the causal effect of agent m on the joint decision is given
by

Cm= 1− 1

1 +
∑
θ ̸=θ◦

µm(θ)
µm(θ◦) exp

{ −1
vmpm

∑
k ̸=m

vkdk(θ)
1− vk(1− pk)

} (8.20)
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Proof. See Appendix 8.C. ■

Similar to the asymmetric communication scenario in Theorem 8.3, as pk → 1 for all
agents, Theorem 8.4 recovers the synchronous collaboration result of Theorem 8.2.
Furthermore, as pm → 0, notice that λ̃∞(θ) → ∞, which in turn implies Cm → 0. In
other words, if an agent does not participate in the decision making, it does not have
any impact on the decision.

Next, we compare the causal impacts of agents under both asymmetric and symmetric
communication schemes, given the same participation {pk}Kk=1, confidence weight
{vk}Kk=1, and informativeness parameters {dk(θ)}Kk=1.

Corollary 8.1 (Comparison of asynchronous scenarios). Agent m exerts a
stronger causal impact on the joint decision in the symmetric scenario compared
to the asymmetric scenario if the misinformation strength (i.e., intervened belief)
satisfies

log µm(θ)
µm(θ◦) ≥

∑
k ̸=m

vkdk(θ)
vm(1− pm)

( 1
pm(1− vk(1− pk))

− pk
)

(8.21)

Proof. Notice from (8.17) and (8.19) if agent m meets condition (8.21), then the λ̃∞(θ)
term in (8.17) exceeds that in (8.19). The result then follows by definition (8.9), since
λ̃∞(θ) is inversely proportional to the causal impact Cm. ■

Corollary 8.1 holds significant relevance for practical applications. For our problem
setting, we can define misinformation as the ratio of the belief on a wrong hypothesis

to the true hypothesis, i.e.,
µm(θ)
µm(θ◦) . Commonly, if misinformation is originating from

malfunctioning agents, this ratio will have a moderate value. In contrast, malicious
agents often supply adversarial misinformation that can be extreme. This suggests
that the symmetric communication scenario is more vulnerable to highly outlying
information potentially caused by adversarial agents, while asymmetric communica-
tion is more sensitive to moderate level misinformation that typically emerges from
malfunctioning agents without harmful intentions. Furthermore, for a fair decision-
making process that aims to account for all agents while remaining resilient against
adversarial threats, asymmetric communication appears to be better in comparison
to the symmetric case. This is because it allocates greater causal weight to moderate
deviations from the nominal belief state while also reducing the influence of extreme
misinformation, providing a safeguard against adversarial attacks.
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8.5 Numerical Simulations

8.5 Numerical Simulations

8.5.1 Synthetic Data

To illustrate our theoretical results, we first consider a binary hypothesis testing prob-
lem with K = 12 agents connected to a FC, each receiving observations that follow a
Gaussian distribution. In other words, two possible hypotheses underlie streaming
data with same variance Gaussian distributions but different means. Under the null
hypothesis, the mean for all agents is assumed to be 0, while under the alternative
hypothesis, it is 0.5 for odd-indexed agents and 1 for even-indexed agents. The prob-
ability of participation pk, which is defined in (8.1) is set to 0.8 for each agent k with
indices 1− 3, to 0.6 for agent indices 4− 6, 0.4 for agent indices 7− 9, and 0.2 for agent
indices 10− 12. Furthermore, the confidence weight vk assigned by the server to each
agent k is 0.125 for agent indices 1− 4, 0.075 for agent indices 5− 8, and 0.05 for agent
indices 9− 12, ensuring that the sum of all weights across the K = 12 agents equals 1.
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Figure 8.2: Simulated log-belief ratios averaged over 1000 Monte Carlo (MC) simulations
and theoretical expressions over time overlap with each other, verifying the derivations in
Theorems 8.2–8.4.

In the first experiment, we average 1000 simulations for three settings: the canonical
synchronous setting, and the asymmetric and symmetric settings from Sec. 8.2.1. This
is performed under an intervention on agent m = 1 with uniform beliefs (µm(θ) = 0.5).
We plot the evolution of log-belief ratios over 500 time instants in Fig. 8.2, as well as the
derived expressions for these values from Theorems 8.2, 8.3, and 8.4. Notice that the
simulated log-belief ratios verify the derived analytical results since they closely align
with the theoretical expressions.

In Fig. 8.3, we illustrate the causal impact of agent m = 1 on the joint decision with
respect to changing participation probability pm. We also include the synchronous
setting where all agents participate with probability {pk}Kk=1 = 1 as a reference. It is
evident from this figure that increasing the frequency of information transmission by
an agent increases its impact on the collaborative decision.
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Figure 8.3: Causal impact of agent m = 1 on the joint decision with changing participation
probability pm. Note that pm is constant for the synchronous case, and the corresponding
constant line is also provided in the plot for comparison purposes.

Next, in Fig. 8.4, we plot the asymptotic log-belief ratios in relation to varying interven-
tion strengths log µm(θ)

µm(θ◦) on agentm = 1. Supporting our theoretical result in (8.21), the
log-belief ratio in the asymmetric setting surpasses the one in the symmetric setting
when the misinformation strength exceeds a certain threshold. As discussed before,
this means that under conditions of high misinformation supply, the asymmetric
communication framework assigns a relatively smaller causal impact compared to the
symmetric communication framework.

Finally, in Fig. 8.5 we plot the causal impact of each agent on the joint decision which
are normalized such that the sum of agents’ impacts under each strategy equals to
1. This plot reveals that the asymmetric communication protocol results in a more
uniform distribution of impacts, whereas the symmetric communication approach
leads to a few agents having significant influence on the joint decision. This supports
our discussions, suggesting that asymmetric communication fosters a fairer decision-
making process that assigns a more uniform impact over participating agents under
moderate deviations.

8.5.2 Application: Multi-Camera Crowd Counting

Next, we apply our results to a multi-view crowd-size estimation application using the
WILDTRACK dataset from [157]. This dataset consists of synchronized video frames
captured by seven static cameras (functioning as agents in our model, K = 7) with
overlapping fields of view — see Fig. 8.6 for sample images.

The primary goal of the agents is to cooperatively track the dynamic size of the crowd
in a specific overlapping region observed by all cameras. For this particular application,
the aforementioned variables in the paper correspond to the following:
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Figure 8.4: Asymptotic log-belief ratio with respect to misinformation strength the log µm(θ)
µm(θ◦) ,

verifying the derived threshold in Corollary 8.1.

• For each agent k (a camera), observation ξk,i corresponds to that agent’s own
recorded image frame at time instant i. Note that the cameras record the envi-
ronment with 60 frames per second, that is, 60 time instants correspond to one
second in total.

• A hypothesis θ ∈ Θ is a possible integer for the crowd size, and Θ = {0, 1, . . . , 50}
is the set of all possible hypotheses. For the current application at hand, it is
known that the number of people in the region of interest will not surpass 50.

• To apply our algorithms in this chapter, we equip the agents with the pre-trained
crowd counting neural network from [160]. We then calibrate the likelihood
functions of the agents by using the neural network estimates as well some
dataset specific samples in order to obtain Lk(ξk,i|θ) for each θ ∈ Θ and for all
agents.

• We set the weights FC assigns to the K = 7 agents uniform, i.e., vk = 1
7 for

each agent k. Moreover, for both asynchronous scenarios, the participation
probabilities pk are set at 0.5.

Under these parameters, Fig. 8.7 illustrates the FC’s crowd count estimates under all
three scenarios, along with the actual number of people present (ground truth). Here,
the estimates of FC represent the hypothesis θ that maximizes the belief µi(θ) at each
time instant i. Furthermore, in Fig. 8.8, the normalized causal impact scores of each
camera on the joint decision are presented for all three scenarios using uniform beliefs
intervention. Notably, the score distribution in the symmetric case exhibits the highest
level of skewness, which mirrors the conclusion with the synthetic data in Fig. 8.5.
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Figure 8.5: Causal impacts of each agent over three scenarios. The scores are normalized
such that for each scenario, agents’ scores sum up to one. It is clear that the distribution of the
scores for the symmetric case has a higher skewness, as suggested by the theoretical results.

(a) (b) (c)

Figure 8.6: Images are part of the WILDTRACK dataset [157], which is acquired in front of
the main building of ETH Zürich, Switzerland. In total, the dataset contains 7 simultaneous
image sequences (with a rate of 60 frames per second), where each image has a resolution of
1920× 1080 pixels. The sample figures (a), (b), and (c) from the dataset capture the same area
simultaneously from different perspectives by agents 1, 3, and 7, respectively.

8.6 Concluding Remarks

In this chapter, we examined a collaborative prediction framework for identifying
and quantifying causal impact of an agent where agents exchange their local infer-
ences about a common target variable with a fusion center. We incorporated two
asynchronicity scenarios that differ in terms of whether the fusion center updates the
agents that do not provide information. Utilizing a causal theoretical framework, we
derived expressions that describe how each agent’s impact on the collective decision
varies based on factors such as the distribution of data (via KL divergences representing
the informativeness of data) received by the agents and their participation frequencies.

The results reveal that an agent has a stronger impact on the joint decision in the
symmetric (reciprocal) communication protocol compared to the asymmetric com-
munication protocol if the misinformation strength surpasses some threshold. This
implies that asymmetric communication protocols are more robust in the face of
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Figure 8.7: Crowd count estimates of FC under all three scenarios, along with the true number
of people (ground truth). The estimates of FC correspond to the hypothesis that maximizes the
belief at each time instant.

adversarial attacks. Nevertheless, symmetric communication offers greater resilience
to moderate deviations from the usual, such as in the case of malfunctioning agents
without harmful intentions.

Future directions include extending the causal impact analysis on this federated frame-
work to decentralized peer-to-peer networks, and also examining different decision
aggregation strategies at the server side such as median-based robust fusion [161].

8.A Proof of Theorem 8.1

In this section, we prove that under both scenarios considered for asynchronous
behavior, and without any intervention, the expected beliefs at the agents place the
value 1 on the true hypothesis as i → ∞. Note that the proof for the synchronous
communication case is a special case of Theorem 2.1. It can also be recovered from
our novel derivations here by setting pk → 1 for each agent k.
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Figure 8.8: Normalized causal impact scores of each camera on the joint decision for all three
scenarios. As in the Fig. 8.5 for synthetic data, distribution of the scores for the symmetric case
has the highest skewness.

8.A.1 Asymmetric Communication

Recall that qk,i is the Bernoulli random variable that is equal to 1 if agent k is connected
to the FC at time i and is sending information, i.e.,

qk,i=

1, if agent k is sending information to FC at time i

0, else.
(8.22)

Similar to the previous chapter, we define the scalar random variables

λi(θ) ≜ log µi(θ
◦)

µi(θ)
, xk,i(θ) ≜ log Lk(ξk,i|θ

◦)
Lk(ξk,i|θ)

. (8.23)

In this case, to derive the recursion of log-belief ratios, observe that if an agent k:

• is not sending any information at time instant i (i.e., it is idle), then the FC uses
its own log-belief ratio from the previous time instant λi−1(θ) to fill the missing
information of agent k during aggregation.

• Otherwise, if agent k is sending its intermediate belief to the server, then its
contribution on the FC decision is λi−1(θ) + xk,i(θ).

In light of the observation above, the contribution of each agent k at time i is a function
of qk,i and can be written as

λi−1(θ), qk,i = 0 (8.24)

λi−1(θ) + xk,i, qk,i = 1 (8.25)
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which is equivalent to

λi−1(θ)(1− qk,i) + (λi−1(θ) + xk,i)qk,i = λi−1(θ) + xk,iqk,i. (8.26)

The fusion center update becomes

λi(θ) = λi−1(θ) + aT
i xi(θ), (8.27)

where we are introducing the vectors

ai ≜ [v1q1,i, . . . , vkqK,i]T (8.28)

and
xi ≜ [x1,i, . . . ,xK,i]T. (8.29)

Taking expectations over randomness of data yields

λi(θ) ≜ E[λi(θ)]
(8.27)= E[λi−1(θ) + aT

i xi(θ)]
= λi−1(θ) + aTd(θ), (8.30)

with the definitions:

a ≜ [v1p1, . . . , vKpK ]T,

d(θ) ≜
[
d1(θ), . . . , dK(θ)

]T
,

dk(θ) ≜ DKL

(
Lk(·|θ◦)||Lk(·|θ)

)
. (8.31)

The global identifiability assumption ensures that for each θ ̸= θ◦, there exists at least
one agent k⋆ that satisfies dk⋆(θ) > 0. Therefore, for each wrong hypothesis θ ̸= θ◦, it
holds that λi(θ)→ +∞ as long as vk⋆pk⋆ > 0, which in turn means µi(θ◦)→ 1 for the
collective decision of agents as i→∞.

8.A.2 Symmetric Communication

In this scenario, agents do not get updated from the FC if they do not send information
to the FC. Therefore, at each time instant, they can have different beliefs and priors.
This situation necessitates the study of the evolution of a local belief (prior) µk,i and
the corresponding local log-belief ratio (LBR) λk,i. If we define a vector consisting of
all LBRs from all agents as

Λi(θ) ≜ [λ1,i(θ), . . . ,λK,i(θ)]T, (8.32)
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then, the LBR at the server side evolves according to the following dynamics:

λi(θ) = aT
i (Λi−1(θ) + xi(θ)) + (āT

i 1K)λi−1(θ), (8.33)

where we use the bar notation to denote additive complements of the random variables,
i.e.,

āi ≜ v − ai = [v1q̄1,i, . . . , vK q̄K,i]T, q̄k,i ≜ 1− qk,i (8.34)

and also use the definition

xi(θ) ≜ [x1,i(θ),x2,i(θ), . . . ,xK,i(θ)]T. (8.35)

Taking the expectation of both sides in (8.33) yields

λi(θ) = aT(Λi−1(θ) + d(θ)) + (āT1K)λi−1(θ). (8.36)

On the other hand, the LBR evolution for an agent k depends on whether it provides
information to the FC update in (8.33), and is given by

λk,i(θ) = λi(θ)qk,i + (λk,i−1(θ) + xk,i(θ))q̄k,i. (8.37)

By taking expectations of both sides we arrive at

λk,i(θ) = E[λi(θ)qk,i] + (λk,i−1(θ) + dk(θ))p̄k, (8.38)

where p̄k ≜ 1− pk. Note that in general,

E[λi(θ)qk,i] ̸= E[λi(θ)]E[qk,i] (8.39)

due to the information sharing of server is conditioned on agents’ information sharing,
and that they are not independent. However, it holds that

E[λi(θ)qk,i] = E
[
qk,i

(
K∑
ℓ=1

vℓ(λℓ,i−1(θ) + xℓ,i(θ))qℓ,i +
K∑
ℓ=1

vℓq̄ℓ,iλi−1(θ)
)]

= pk

(
vk(λk,i−1(θ) + dk(θ)) +

∑
ℓ̸=k

vℓ(λℓ,i−1(θ) + dℓ(θ))pℓ +
∑
ℓ̸=k

vℓp̄ℓλi−1(θ)
)

(8.40)
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Next, we introduce the variables

s ≜ [s1, . . . , sK ]T, sk ≜ pk
∑
ℓ ̸=k

vℓp̄ℓ, (8.41)

p ≜ [p1, . . . , pK ]T, p̄ ≜ 1K − p (8.42)

σ ≜
K∑
k=1

vkp̄k = āT1K (8.43)

and the K ×K diagonal matrices

A ≜ diag(a), P ≜ diag(p), P̄ ≜ diag(p̄). (8.44)

Accordingly, if we also define the (K + 1) dimensional extended LBR vector as

Λ̄i(θ) ≜
[

Λi(θ)
λi(θ)

]
, (8.45)

then, by relations (8.36) and (8.38), we arrive at a linear recursion of the following form:

Λ̄i(θ) = RΛ̄i−1(θ) + Ud(θ). (8.46)

Here, we introduced the (K + 1)× (K + 1) dimensional matrix

R ≜
(

P̄A + P̄ + paT s
aT σ

)
(8.47)

and the (K + 1)×K dimensional matrix

U =
(

P̄A + P̄ + paT

aT

)
. (8.48)

Since R is a stochastic matrix with nonzero entries, it is also a primitive matrix. There-
fore, R has a Perron eigenvector vR with all positive entries that corresponds to the
largest magnitude eigenvalue. Hence, it holds that

1
i
Λ̄i(θ)→ vRUd. (8.49)

Under global identifiability assumption that for at least one agent dk(θ) > 0, expected
beliefs at the agents place the value 1 on the true hypothesis.

8.B Proof of Theorem 8.3

Under an intervention on agent m, the contribution of any agent k ̸= m at time i
is the same as in the pre-intervention case and is given by (8.26). Furthermore, the
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intervened agent m’s one-step contribution is equal to the intervention strength if
agent m is present, and equal to the FC’s log-belief ratio (LBR) otherwise. In other
words, agent m’s contribution under an intervention becomes

λ̃i−1(θ)(1− qm,i) + cqm,i. (8.50)

In (8.50), we use∼ on top of pre-intervention variables to denote the post-intervention
counterparts of those variables and also note that we are defining

c ≜ log µm(θ◦)
µm(θ) (8.51)

for brevity of notation. Aggregating the contributions (8.26) and (8.50) of each agent
according to the geometric averaging rule yields the following update for the LBR of
the fusion center:

λ̃i(θ) = (1− vm)λ̃i−1(θ) + aT
i x̃i(θ), (8.52)

where we introduced the log-belief ratio counterpart vector under intervention:

x̃i(θ) ≜ [x1,i(θ), . . . ,xm−1,i(θ), c,xm+1,i(θ), . . . ,xK,i(θ)]T (8.53)

where c is taken from (8.51). According to these definitions, for the expected LBR, it
holds that

λ̃i(θ)
(8.52)= E

[
(1− vm)λ̃i−1(θ) + aT

i x̃i(θ)
]

= (1− vm)λ̃i−1(θ) + aTE[x̃i(θ)]

= (1− vm)λ̃i−1(θ) + aTd̃(θ) (8.54)

where the vector of KL divergences under an intervention on agent m is defined as

d̃(θ) ≜ [d1(θ), . . . , dm−1(θ), c, dm+1(θ), . . . , dK(θ)]T. (8.55)

Consequently, in the limit, the LBR of the server under an intervention on agent m is
given by

lim
i→∞

λ̃i(θ) = 1
vm

aTd̃(θ) = 1
vm

∑
k ̸=m

vkpkdk(θ) + pmc. (8.56)

8.C Proof of Theorem 8.4

For simplicity of notation and without loss of generality, we intervene on agent m = 1.
This means that whenever it is active (q1,i = 1), the contribution in terms of the log-
belief ratio will be equal to c defined in (8.51). Under such scheme, the linear recursion
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from (8.46) transforms, under the intervention on m = 1, to

Λ̃i(θ) = R̃Λ̃i−1(θ) + Ũd̃(θ) (8.57)

where R̃ is the submatrix of R without the first column and row, Ũ is the submatrix of
U without the first row, and d̃(θ) = [c, d2(θ), . . . , dk(θ)]. Note that the largest eigenvalue
of R̃ is smaller than 1, hence we obtain

Λ̃∞(θ) = (I + R̃ + R̃2 . . . )Ũd̃(θ)
= (I− R̃)−1Ũd̃. (8.58)

We therefore need to invert (I− R̃). We write I− R̃ in block matrix form:

M ≜ I− R̃

=
(

P̃− (I− P̃)Ã− p̃ãT −s̃
−ãT 1− σ

)

≜

(
M11 M12
M21 M22

)
(8.59)

where
p̃ ≜ [p2, . . . , pK ], ã ≜ [v2p2, . . . , vKpK ], (8.60)

and M11,M12,M21,M22 are submatrices of dimensions (K − 1) × (K − 1), (K − 1) ×
1, 1× (K − 1), 1× 1, respectively, and

P̃ ≜ diag(p̃), Ã ≜ diag(ã). (8.61)

Using the Schur complement of M [8, Chapter 1.4]

S ≜ M22 −M21(M11)−1M12, (8.62)

which is scalar, we can write the last row of M−1 as

[−S−1M21(M11)−1 | S−1] = S−1[−M21(M11)−1 | 1]. (8.63)

Note that we are only interested in finding the last row of M−1 as only this row con-
tributes to the FC’s LBR in steady state, which is the last entry of Λ̃∞(θ).

First, we find M−1
11 . Since M11 is the sum of a diagonal matrix and a rank-one matrix,

we can calculate M−1
11 by the matrix inversion formula [8, Chapter 1.4]:

M−1
11 = (P̃− (I− P̃)Ã)−1 + (P̃− (I− P̃)Ã)−1p̃ãT(P̃− (I− P̃)Ã)−1

1− ãT(P̃− (I− P̃)Ã)−1p̃
(8.64)
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Consequently,

−M21(M11)−1 = ãT(P̃− (I− P̃)Ã)−1 + ãT(P̃− (I− P̃)Ã)−1p̃ãT(P̃− (I− P̃)Ã)−1

1− ãT(P̃− (I− P̃)Ã)−1p̃
(8.65)

Observe that for k > 1, the kth element of−M21(M11)−1 is given by

vk
1− p̄kvk

1
1−

∑
ℓ̸=1

vℓpℓ
1− p̄ℓvℓ

(8.66)

If we define sk ≜ pk
∑
ℓ ̸=k vℓp̄ℓ, we get

S = M22 −M21(M11)−1M12

=
K∑
k=1

vkpk −
∑
k ̸=1

vksk
1− p̄kvk

1
1−

∑
ℓ̸=1

vℓpℓ
1− p̄ℓvℓ

(8.67)

Now, we calculate Ũd̃(θ). Observe that

Ũd̃(θ) =
[
u2, . . . , uK |

(
v1p1c+

∑
k ̸=1

vkpkdk(θ)
)]T

(8.68)

where
uk = pk

(
v1p1c+

∑
ℓ ̸=1

vℓpℓdℓ(θ)
)

+
(
p̄kvkpk + p̄k

)
dk(θ). (8.69)

As a result, it holds that

λ̃∞(θ) = S−1
[
−M21(M11)−1 | 1

] (
Ũd̃(θ)

)
= S−1

(∑
k ̸=1

vkdk(θ)(p̄kvkpk + p̄k)
1− p̄kvk

1
1−

∑
ℓ̸=1

vℓpℓ
1− p̄ℓvℓ

+
∑
k ̸=1

vkpk
1− p̄kvk

v1p1c+
∑
ℓ ̸=1

vℓpℓdℓ(θ)

1−
∑
ℓ ̸=1

vℓpℓ
1− p̄ℓvℓ

+ v1p1c+
∑
ℓ̸=1

vℓpℓdℓ(θ)
)

=

∑
k ̸=1

vkdk(θ)(p̄kvkpk + p̄k)
1− p̄kvk

+ v1p1c+
∑
ℓ̸=1

vℓpℓdℓ(θ)

S

(
1−

∑
ℓ ̸=1

vℓpℓ
1− p̄ℓvℓ

)
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=

∑
k ̸=1

vkdk(θ)(p̄kvkpk + p̄k)
1− p̄kvk

+ v1p1c+
∑
ℓ̸=1

vℓpℓdℓ(θ)(
K∑
k=1

vkpk

)(
1−

∑
k ̸=1

vkpk
1− p̄kvk

)
−
∑
k ̸=1

vksk
1− p̄kvk

. (8.70)

Observe that the term in the numerator is equivalent to

∑
k ̸=1

vkdk(θ)
(
p̄kvkpk + p̄k

1− p̄kvk
+ pk

)
+ v1p1c =

∑
k ̸=1

vkdk(θ)
1− p̄kvk

+ v1p1c. (8.71)

Furthermore, if we incorporate the following relation for sk

sk = pk
∑
ℓ ̸=k

vℓp̄ℓ = pk

(
K∑
ℓ=1

vℓp̄ℓ − vkp̄k

)
(8.72)

to the term in the denominator of (8.70), we obtain(
K∑
k=1

vkpk

)(
1−

∑
k ̸=1

vkpk
1− p̄kvk

)
−
∑
k ̸=1

vksk
1− p̄kvk

=
(

K∑
k=1

vkpk

)(
1−

∑
k ̸=1

vkpk
1− p̄kvk

)
−
( K∑
k=1

vkp̄k

)∑
k ̸=1

vkpk
1− p̄kvk

+
∑
k ̸=1

vkpk
1− p̄kvk

vkp̄k

=
(

1−
K∑
k=1

vkp̄k

)(
1−

∑
k ̸=1

vkpk
1− p̄kvk

)
−
( K∑
k=1

vkp̄k

)∑
k ̸=1

vkpk
1− p̄kvk

+
∑
k ̸=1

vkpk
1− p̄kvk

vkp̄k

=
K∑
k=1

vkpk −
∑
k ̸=1

vkpk = v1p1. (8.73)

Thus, the expected LBR in steady state becomes

λ̃∞(θ) = 1
v1p1

∑
k ̸=1

vkdk(θ)
1− vk(1− pk)

+ c = 1
v1p1

∑
k ̸=1

vkdk(θ)
1− vk(1− pk)

+ log µ1(θ◦)
µ1(θ) . (8.74)

Since the choice of m = 1 was without loss of generality, replacing the subscripts 1 by
m in (8.74), we arrive at the result.
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9 Conclusion

In this thesis, we contributed to the field of collective decision-making processes
within complex and uncertain environments by proposing variations of sequential
Bayesian reasoning in the context of networked interactions. Here, we summarize the
key findings and contributions across our investigations.

9.1 Summary of Results

In Chapter 3, we established a theoretical framework for comparing arithmetic and
geometric averaging as methods for information fusion. Our results define quantitative
bounds that link the effectiveness of these fusion rules to the network’s connectivity
and the diversity of information it contains. The findings offer practical guidelines for
selecting fusion strategies that optimize learning rates in various network configura-
tions.

In Chapter 4, we investigated the network evolution under randomness in communi-
cation patterns. We identified conditions under which networked agents can either
successfully learn the truth or, alternatively, mislearn. Our results provide guidelines
on how the distribution and frequency of communication can impact the networked
inference processes.

In Chapter 5, we utilized HMMs to model the changes in the state of nature. We
expanded existing algorithms of static belief formation to track dynamic states. We pro-
vided a comparison of theoretical performance between a centralized strategy, which
is maximum-a-posteriori (MAP) optimal, and our proposed decentralized approach.

In Chapter 6, we explored the implications of our partially observable multi-agent
framework to Markov decision processes. We proposed a policy evaluation algorithm
for agents over a graph under stochastic observations. The contribution in this chapter
is relevant to the practical deployment of multi-agent reinforcement learning when
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agents operate without full knowledge of their environment.

In Chapter 7, trying to understand the causal relationships within social interactions
over time, we developed a theoretical framework to capture the causal impact of agents.
In addition to deriving expressions for causal impact between each agent pair, we also
proposed algorithms for ranking agents based on their influence and for discovering
causal relationships from observational data.

In Chapter 8, we extended our discussion on causality to consider the effect of asyn-
chronous communication. Our findings revealed how different participation patterns
and fusion center policies can change the strength of causal influences.

9.2 Future Directions

Finally, we discuss possible extensions to our work.

Beyond categorical variables. A direction for future research is to explore the ap-
plicability of our results to distributed estimation [68, 69, 162], which focuses on the
inference of continuous variables. The algorithms we propose in this dissertation
could be adapted for continuous state estimation with the caveat that the summations
are replaced with possibly intractable integrals. In some scenarios, evaluation of the
integrals could still be numerically feasible under conditions, such as likelihood func-
tions following exponential family of distributions. Furthermore, in the context of our
discussion in Chapter 3, information fusion for continuous variables generally relies
on fusing point estimates. However, it is known that these can also be understood as
fusions of probability density functions [35]. This leads us to question whether the
results in Chapter 3 for finite-sized hypothesis sets could extend to the distributed
parameter estimation problems.

Finite sample guarantees. The current dissertation primarily provided asymptotic
theoretical guarantees. A possible extension would be to explore theoretical guarantees
in finite sample or time regimes, as in [26,163]. For example, by extending our results in
Chapter 3 in a subsequent work [59], we established the asymptotically normal behav-
iors of arithmetic and geometric rule based federated inference algorithms. Building
on this result, employing the Berry-Esseen theorem [60] and similar techniques could
provide deeper insights into the limited sample behaviors of these algorithms.

Network interference. At the intersection of causal inference and networks, there exists
a body of work focusing on network interference [164–166]. These studies examine
causal inference when interventions on certain agents can affect others within the
network, and aim to design randomized experiments that take this fact into account.
However, these works typically assume that only immediate neighbors of an agent
can impact an individual’s response. Although our settings in Chapters 7 and 8 differ,
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our analytical contributions may still prove useful for this area of research, since
we discover how influence and interference propagate throughout the network in
Chapter 7. For example, our findings allow us to quantify how an agent’s influence
diminishes with increasing distance from other agents in the graph.

Causal discovery in networked time-series. In Chapters 7 and 8, we have studied
causal influence attributions in temporal interactions, with an emphasis on the effect of
the underlying communication network. A promising future direction is to incorporate
other causality methodologies in time-series analysis [167, 168] to our framework. This
could involve exploring alternative metrics [169, 170] that capture higher-order effects
beyond expected value differences for the causal impact definition. Additionally, we
can combine our approach with recent advancements in causal discovery from time
series data [171–175]. Moreover, going beyond identifying influence, we could aim to
address counterfactual questions.

Heterogeneous environments. In this dissertation, we have primarily focused on
scenarios where the network of agents shares a common true state of nature. A natural
question that arises is what happens when agents receive observations from different
hypotheses. There are recent studies in the literature that explore this problem from
various angles. Some works consider agents to be cooperative regardless of the ob-
servations they receive and investigate how network topology – such as community
structures – affects overall network behavior [176–178]. Other research adopts a game-
theoretic approach and models the agents to be strategic and self-interested who aim
to identify others following the same hypothesis [179, 180]. A direction for future work
is to combine our models and analysis with these studies.

Information sharing variations. In Chapters 3 and 4, we have focused on specific
methods for information fusion and sharing. There are other procedures for informa-
tion exchange worth exploring. For instance, in Chapter 4, we addressed the issue of
filling missing belief components using proportional assignments in (4.8). An alterna-
tive approach, as suggested by [181], is to directly incorporate the received information
into the beliefs without normalization. Moreover, our model in Chapter 4 assumes that
the trending hypothesis τi is the same for all agents and is independent and identically
distributed over time. Future research could examine scenarios where each agent k
possibly shares a different hypothesis τk,i or where the trending hypothesis τi evolves
according to a Markov chain. Additionally, we have considered the case that agents
communicate with all of their neighbors at each time instant. In some real-world
applications, individuals can exchange beliefs with only a subset of their contacts, as
discussed in [182, 183]. Future work could involve integrating our models and analyses
with these studies to more accurately reflect real-world information exchange over
networks.

Combining data-driven and model-based designs. Throughout this dissertation,
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we provided both theoretical insights and practical guidance for decision-making
networks. In practice, the models we consider might not fully encapsulate real-world
conditions. Therefore, a possible future direction could be to blend these models with
data-driven approaches. This way, not only we can use our results on these models
for explainability, but also can enhance the capacity of our models to mirror real-
world conditions. By doing so, we can achieve a balance between interpretability and
performance that results in a more trustworthy and transparent approach, as opposed
to fully data-driven approaches with black-box models.

Robustness to model uncertainties. Another key issue is assessing the sensitivity of the
algorithms and analyses in this dissertation to approximation errors in the models. In
practice, model parameters may be estimated or subject to uncertainties. For example,
in Chapter 5, investigating the impact of inaccuracies in the state transition model
could reveal how deviations from the assumed dynamics affect the agents’ ability to
track the true state.

Causality for systems. In fields like signal processing, control, and communications,
systems often have a modular structure that allows for a clear understanding of the
data-generating process. This contrasts with fields such as healthcare, where the chal-
lenge lies in learning causal representations from data [184]. However, this inherent
understanding of causal structures is often underutilized. By more explicitly incorpo-
rating causal reasoning into these fields, we can improve the design and analysis of
general systems, as demonstrated in Chapters 7 and 8 to understand the behavior of
networked systems.
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